

Australian Dairy Herd Improvement Report 2025

DataGene is an independent, industry-owned organisation that delivers worldclass herd improvement products and services to Australian dairy farmers and their service providers. Our members include leading herd improvement service providers, genetics suppliers, breed associations and peak dairy industry organisations.



CONTENTS

Contents	3
Abbreviations	3
Introduction	4
About this report	5
Production trends	6
Productive herd life	15
New Survival ABV research	17
Overall herd-life	17
Early and late survival	18
Genetic trends	20
Genetic trends – Holstein	21
Genetic trends – Jerseys	24
Genetic trends – Australian Reds	27

Abbreviations

ABV	Australian Breeding Value
BPI	Balanced Performance Index
CDR	Central Data Repository
Ginfo	Genomic information reference herd
HWI	Health Weighted Index
NASIS	National Al Sire Identification System
SI	Sustainability Index

Introduction

Once a year, we pause to reflect on Australia's national herd of recorded dairy cows. It is an opportunity to recognise the meticulous work of farmers and DataGene members who contribute their data and insights. Each record may seem small on its own, but together they form a powerful national resource that drives productivity, supports genetic improvement, and strengthens the businesses that make up our dairy industry.


Milk production and cow longevity are key measures of a dairy business's performance

Milk production and cow longevity are key measures of a dairy business's performance. This report presents 2024/2025 milk production trends based on routine herd recording, with analysis by region, breed, and other herd characteristics. Reflecting the industry's strategic focus on extending productive herd life, we also report trends in age at first calving, replacement rate, average age, and lifetime number of lactations.

While this report provides a summary of key findings, a more detailed dataset is available in spreadsheet form on DataGene's website for those wishing to explore the numbers further.

Finally, we include updated genetic trends for Australia's national breeding indexes and two traits of interest—mastitis resistance and fertility. Genetic trend data for additional traits across multiple breeds can be obtained by contacting the DataGene team.

We sincerely thank all farmers and member organisations for their daily commitment to herd recording and data sharing. This report is made possible through the collaboration of herd recording centres including HICO, National Herd Development, TasHerd, Dairy Express, Farm West, NuGenes, Yarram Herd Services, and Australian Herd Recording Services, as well as on-farm software providers and breed associations.

About this report

The cow performance statistics provided in this report are for the 2024/25 financial year. They were extracted from DataGene's Central Data Repository (CDR) in October 2025. The data used in this analysis are supplied from farmers through routine herd recording.

All records are checked to ensure the analysis is conducted to a consistently high standard. The following are examples of checks that align with the long-standing practices associated with this report.

Cows are considered for inclusion in the statistics if:

- they had a lactation that reached 305 days between 1 July 2024 and 30 June 2025, or
- the lactation was terminated between these dates and had not reached 305 days prior to 1 July 2025.

A cow is counted once where:

- the same data is supplied for the cow in more than one herd, and
- more than one lactation record is supplied that satisfies the criteria.

All records are checked to ensure the analysis is conducted to a consistently high standard

There must be at least 30 cows in a herd for that herd's data to be included in the statistics.

Cows that pass the above tests are included in the total number of recorded cows and hence in the average herd size.

Cows are excluded from the production averages if:

- lactation exclusion is set to R indicating it should be rejected,
- no standard milk yield is provided or the yield is not valid, or
- first test date is before the calving date.

Cows are automatically excluded from the production averages for any of the following reasons:

- lactation length is less than 120 days,
- first test is more than 100 days after calving,
- the animal is a heifer that calved at less than 18 months of age, or
- interval between tests is greater than 150 days.

Production trends

Thirty-five percent of Australia's dairy herds and 28% of cows are enrolled in routine herd recording, providing the foundation of the insights in this report. Over the past decade, the number of herd-recorded cows has declined by 4.4% per year — a faster rate than the 1.7% annual decline in the total national herd.

At the same time, farmers now have access to more tools than ever to measure and monitor herd performance. To keep pace, the industry must continue to strengthen its ability to integrate data from multiple sources for the benefit of farmers, research, and industry development.

DataGene's <u>DataConnect</u> project is one example of targeted investment to meet this need. This multi-year initiative enables seamless data exchange with on-farm software, extending DataGene's products and services to a greater number of herds. Increasing integration with DeLaval milking systems is already boosting the volume of herds, cows, and records captured in DataGene's central databases - enhancing the depth and value of Australia's dairy data resource.

Thirty-five percent of Australia's dairy herds and 28% of cows are enrolled in routine herd recording

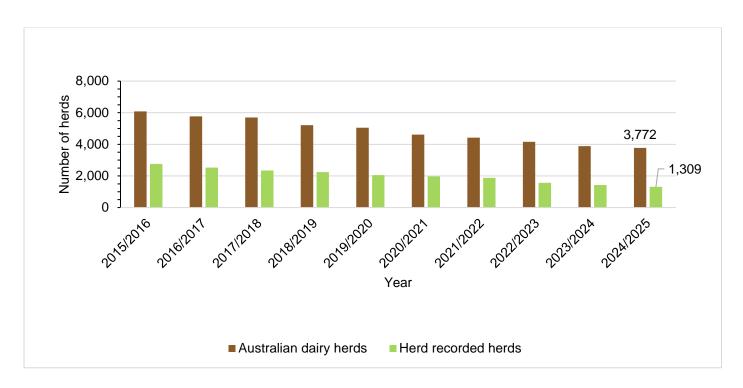


Figure 1: Number of Australian dairy herds and herd recorded herds

Milk solid production per cow – measured as kilograms of fat plus protein – has increased at a rate of 0.9% per year over the past five years. This improvement aligns with a 1.4% annual increase in combined component percentages (fat % + protein %) over the same period. Tables 1 and 2 present regional production averages as well as longer-term trends.

The accelerating rate of genetic gain continues to lift both yield and milk composition, complementing ongoing advances in animal nutrition and herd management.

The economic values for production traits in Australia's breeding indices were recently updated as part of the 2025 National Breeding Objective. These revisions adjust the relative weighting of protein and fat so that their values are now close to equal. With both feed and milk prices rising, the updated breeding indices—scheduled for release in December 2025—reflect current and future economic conditions. Over the next decade, genetic progress for both fat and protein yield is expected to continue, with slightly faster gains anticipated for fat (kg).

The accelerating rate of genetic gain continues to lift both yield and milk composition, complementing ongoing advances in animal nutrition and herd management

Table 1: National and state production averages (2024/2025)

		Herds an	d cows red	orded			Production averages						
State	Number of herds	Included in averages	Excluded from averages	Total cows	Herd size	Milk (litres)	Fat (%)	Fat (kg)	Protein (%)	Protein (kg)	Lactation length (days)		
Victoria	820	143,131	99,318	242,449	284.8	7,251	4.2	303	3.4	247	332		
New South Wales	172	35,825	13,142	48,967	304.8	7,786	4	309	3.3	259	338		
Queensland	81	10,017	3,611	13,628	187	5,838	4.1	239	3.3	195	332		
South Australia	113	22,921	5,899	28,820	291.3	7,967	4	314	3.3	264	341		
Tasmania	68	15,331	4,676	20,007	354.8	7,120	4.2	296	3.5	252	299		
Western Australia	55	11,585	4,813	16,398	302.7	7,961	3.9	312	3.2	255	355		
Australia	1,309	238,810	131,459	370,269	286.1	7,367	4.1	302	3.4	249	333		
Victorian regi	ons												
Northern	314	55,669	33,836	89,505	280.4	7,866	4.1	321	3.4	265	340		
Eastern	305	50,170	40,954	91,124	271.4	6,757	4.2	287	3.4	232	327		
Western	201	37,292	24,528	61,820	313.2	6,999	4.3	299	3.4	239	327		

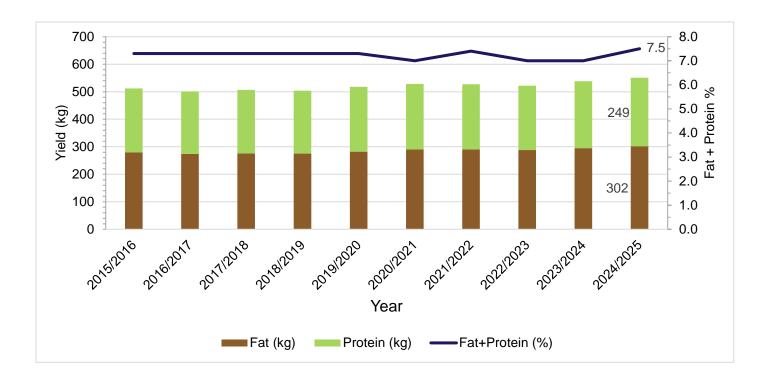


Figure 2: Average fat and protein yield/cow/lactation and component content

Table 2: National totals and production averages from 1999/2000 to 2024/2025

		Herds	and cows	recorded				Prod	uction	average	S	
Year	Herd recorded herds	Australian herds^	Included in averages	Excluded from averages	Total cows	Herd size	Milk (litres)	Fat (%)	Fat (kg)	Protein (%)	Protein (kg)	Lactation length (days)
1999/ 2000	6,976		947,104	81,129	1,028,233	147.4	5,691	4.0	230	3.3	187	302
2000/ 2001	7,405		940,712	286,248	1,226,960	165.7	5,682	4.0	229	3.3	186	302
2001/ 2002	6,930		888,497	303,269	1,191,766	172	6,027	4.0	243	3.3	200	307
2002/ 2003	6,358		842,113	335,786	1,177,899	185.3	5,877	4.0	235	3.3	193	303
2003/ 2004	5,704		722,074	298,727	1,020,801	179	6,048	4.0	242	3.3	201	310
2004/ 2005	5,080		725,374	224,352	949,726	187	6,257	4.0	251	3.3	207	314
2005/ 2006	4,746		701,852	208,536	910,388	191.8	6,402	4.0	255	3.3	212	316
2006/ 2007	4,462	8,055	655,212	222,592	877,804	196.7	6,452	4.0	257	3.3	216	312
2007/ 2008	3,966	7,953	578,263	207,199	785,462	198	6,596	4.0	264	3.3	220	321
2008/ 2009	3,779	7,924	566,029	206,694	772,723	204.5	6,645	4.1	270	3.4	223	318
2009/ 2010	3,503	7,511	522,869	201,400	724,269	206.8	6,680	4.0	270	3.3	223	323
2010/ 2011	3,359	6,883	518,675	186,915	705,590	210.1	6,813	4.0	273	3.3	228	323
2011/ 2012	3,301	6,770	525,908	205,174	731,082	221.5	6,930	4.0	274	3.3	231	324
2012/ 2013	3,173	6,398	511,923	195,896	707,819	223.1	6,881	4.0	272	3.3	229	322
2013/ 2014	3,023	6,308	492,461	180,638	673,099	222.7	6,890	4.0	273	3.3	228	327
2014/ 2015	2,880	6,128	493,582	186,955	680,537	236.3	6,979	4.0	278	3.3	232	324
2015/ 2016	2,764	6,079	472,223	194,462	666,685	241.2	6,983	4.0	279	3.3	233	320
2016/ 2017	2,532	5,771	391,908	206,182	598,090	236.2	6,861	4.0	274	3.3	227	324
2017/ 2018	2,351	5,699	404,116	185,378	589,494	250.7	6,912	4.0	276	3.3	231	321
2018/ 2019	2,248	5,213	392,750	204,607	597,357	265.7	6,870	4.0	275	3.3	229	320
2019/ 2020	2,056	5,055	354,915	185,076	539,991	262.6	7,041	4.0	282	3.3	236	324
2020/ 2021	1,967	4,618	344,157	183,396	527,553	268	7,085	4.0	290	3.0	238	323
2021/ 2022	1,882	4,420	319,973	186,734	506,707	269.2	7,069	4.1	290	3.3	237	321
2022/ 2023*	1,567	4,163	288,743	161,574	450,317	283	6,993	4.0	288	3.0	234	342
2023/ 2024	1,426	3,889	258,412	134,071	392,483	271	7,233	4.0	295	3.0	243	337
2024/ 2025	1,309	3,772	238,810	131,459	370,269	286.1	7367	4.1	302	3.4	249	333

*From 2022/2023, an updated data editing and analysis process was applied. ^Source: Dairy Australia In Focus reports

Table 3: Number of herds in fat production categories by region

				Average	fat produ	ction (kg	per cow)			
State	< 125	125-149	150-174	175-199	200-224	225-249	250-274	275-299	300-324	> 324
Victoria	2	3	18	25	31	67	93	136	118	158
New South Wales	1	1	2	4	9	16	29	25	21	36
Queensland	2	1	3	11	11	12	8	8	5	5
South Australia	0	0	0	1	9	7	13	12	20	31
Tasmania	0	0	1	1	4	5	11	8	8	12
Western Australia	0	0	0	1	2	5	5	4	9	20
Australia	5	5	24	43	66	112	159	193	181	262
Victorian region)S									
Northern	2	1	4	5	8	23	31	51	50	81
Eastern	0	1	8	11	17	27	41	51	43	43
Western	0	1	6	9	6	17	21	34	25	34

Table 4: Number of herds in protein production categories by region

			Α	verage pr	otein pro	duction (k	g per cov	v)		
State	< 100	100-124	125-149	150-174	175-199	200-224	225-249	250-274	275-299	> 299
Victoria	3	4	23	38	66	122	147	128	78	42
New South Wales	1	1	2	9	13	23	41	27	12	15
Queensland	2	2	5	13	15	15	7	1	3	3
South Australia	0	0	0	7	8	13	16	20	11	18
Tasmania	0	1	0	3	6	10	11	5	6	8
Western Australia	0	0	1	1	4	5	9	11	13	2
Australia	6	8	31	71	112	188	231	192	123	88
Victorian region	าร									
Northern	2	1	4	9	20	33	55	59	43	30
Eastern	0	2	12	18	27	57	56	43	21	6
Western	1	1	7	11	19	32	36	26	14	6

Table 5: Production averages by age group

			Production averages (per cow per lactation)									
Age group	Number of cows	Milk (litres)	Fat (%)	Fat (kg)	Protein (%)	Protein (kg)	Lactation length (days)					
2-year-old	51,703	6,428	4.17	267	3.41	219	335					
3-year-old	49,559	7,290	4.12	300	3.42	249	335					
Mature cow	137,548	7,748	4.09	317	3.37	260	331					
Total	238,810	7,367	4.11	302	3.39	249	333					

Dairy Australia's <u>reproductive management resources</u> highlight the ratio of milk yield from mature cows to that of two-year-olds as a practical indicator of heifer growth and development. Well-grown heifers typically achieve higher reproductive performance than those that are undergrown. Figure 3 compares average production of two-year-old and mature cows in two seasons, 10 years apart, and indicates that today's heifers are producing slightly below the target yield.

Well-grown heifers typically achieve higher reproductive performance than those that are undergrown

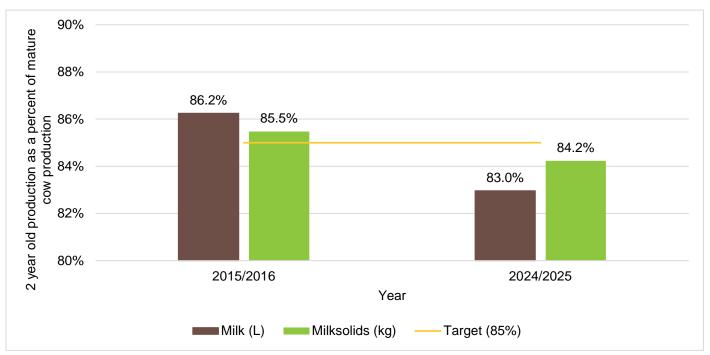


Figure 3: Production of 2-year-old cows as a percentage of mature cow production in 2015/2016 and 2024/2025

Table 6: Production averages by age group and mating type

		Average	Fat (kg)	Average Protein (kg)				
Age group	Number of cows	Artificially bred stock	Naturally bred stock	Artificially bred stock	Naturally bred stock			
2-year-old	51,703	273	253	223	208			
3-year-old	49,559	312	271	258	226			
Mature cow	137,548	330	290	271	239			
Total	238,810	313	279	257	231			

Table 7: Production averages by month of calving

				Produ	uction av	erages (per	cow per lac	tation)
Calving	Number of cows	% of total	Milk (litres)	Fat (%)	Fat (kg)	Protein (%)	Protein (kg)	Lactation length (days)
January	8,080	3.4	7,558	4.00	302	3.34	252	347
February	17,065	7.1	7,812	4.04	315	3.37	263	345
March	29,689	12.4	7,629	4.10	312	3.40	259	341
April	23,919	10	7,545	4.08	307	3.38	255	332
May	18,886	7.9	7,461	4.12	307	3.38	251	328
June	13,936	5.8	7,167	4.15	297	3.39	242	322
July	24,447	10.2	7,059	4.20	296	3.43	241	320
August	44,769	18.7	7,172	4.19	300	3.44	247	313
September	27,243	11.4	7,207	4.10	295	3.37	243	346
October	15,202	6.4	7,231	4.04	292	3.32	240	346
November	9,221	3.9	7,529	4.01	302	3.30	248	356
December	6,353	2.7	7,531	3.99	300	3.30	248	351
Australia	238,810	100	7,367	4.11	302	3.39	249	333

Table 8: Production averages by breed

			Product	tion avera	ages (per co	w per lactation	on)
Breed	Number of cows	Milk (litres)	Fat (%)	Fat (kg)	Protein (%)	Protein (kg)	Lactation length (days)
Holstein	147,590	7,923	3.98	315	3.31	262	338
Jersey	34,625	5,822	4.81	280	3.74	217	327
Holstein/Jersey Cross	6,548	6,720	4.43	297	3.53	237	320
Guernsey	919	5,852	4.33	253	3.42	199	343
Ayrshire	2,041	5,958	4.10	244	3.38	201	332
Dairy Shorthorn	262	6,541	3.94	258	3.28	214	317
Illawarra	3,726	7,084	4.04	286	3.30	233	339
Unknown Breed	29,789	6,955	4.08	283	3.42	237	322
Simmental	649	8,121	4.27	346	3.42	277	324
Australian Red Breed	10,765	6,837	4.15	283	3.49	238	321
Brown Swiss	1,803	6,728	4.06	273	3.49	234	349

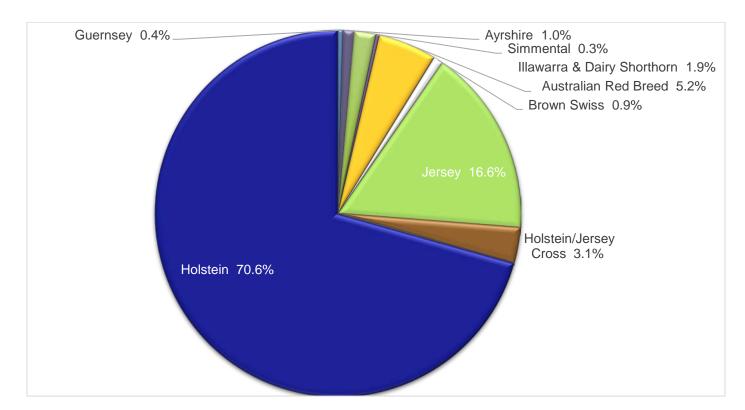


Figure 4: Proportion of animals of known breed

Table 9: Distribution of calvings by month and region

				Perce	ntage of	cows th	nat calve	ed each	month			
State	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Victoria	2	6	15	12	9	6	11	20	10	5	2	1
New South Wales	7	9	9	8	8	9	11	10	9	8	7	6
Queensland	7	8	10	10	10	9	10	9	7	8	7	7
South Australia	6	13	12	8	6	4	7	17	11	8	6	4
Tasmania	0	1	3	1	1	0	7	40	31	12	2	1
Western Australia	8	15	11	8	8	5	4	10	9	7	10	5
Australia	3	7	12	10	8	6	10	19	11	6	4	3
Victorian region	าร											
Northern	2	5	18	15	8	3	8	22	11	5	3	2
Eastern	1	4	12	8	5	5	19	28	12	4	1	1
Western	3	9	14	14	16	12	7	8	8	5	3	1

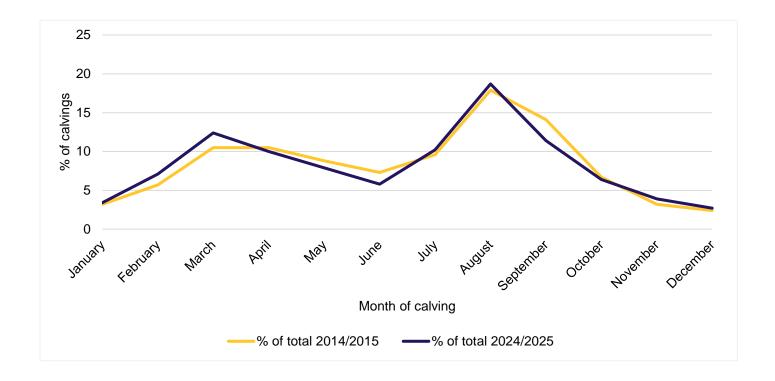


Figure 5: Comparison of the percent of calvings by month in 2014/15 and 2024/2025

PRODUCTIVE HERD LIFE

Productive herd life

Cows that are highly productive and live long, healthy lives make a greater contribution to dairy business profitability than cows that only last one or two lactations. Older cows generally produce more milk per lactation than first-calving heifers (Table 5). Extending productive herd life reduces the need to rear as many replacements, lowering heifer-rearing costs. Longer productive lifespans also deliver benefits for animal welfare and environmental sustainability. It's no surprise that farmers value long-lasting cows.

The following figures explore statistics associated with average age, productive life, and heifer replacement rates.

One way to assess the average age of Australia's herd-recorded cows is by examining age at the cow's most recent calving, which averages around 55 months (roughly 4½ years old). As shown in Figure 6, average age varies slightly between breeds, ranging from 49 to 60 months.

Encouragingly, older cows remain well represented in the national herd: more than 20% of cows are in lactation five or greater (Figure 8). Ongoing research through DairyBio and DairyUp is focused on further improving productive herd life – an outcome that supports both business resilience and the sustainability of dairy production.

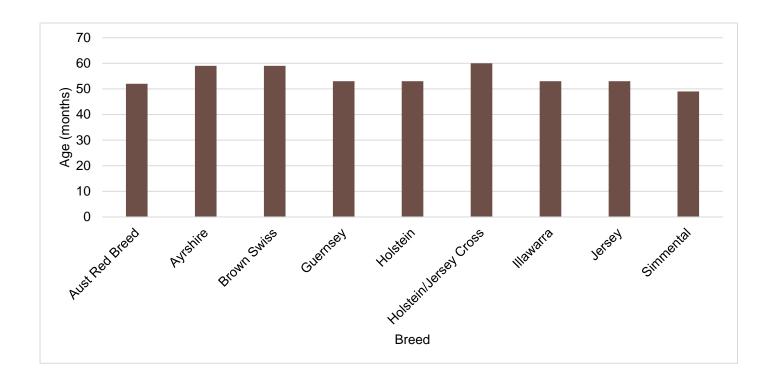


Figure 6: Average age at most recent calving, by breed

PRODUCTIVE HERD LIFE

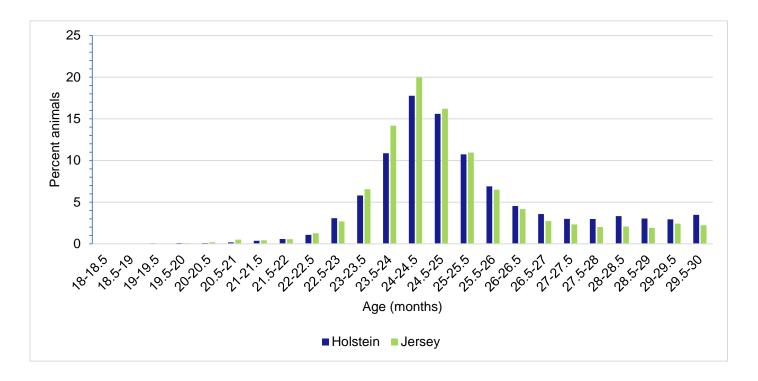


Figure 7: Age at first calving

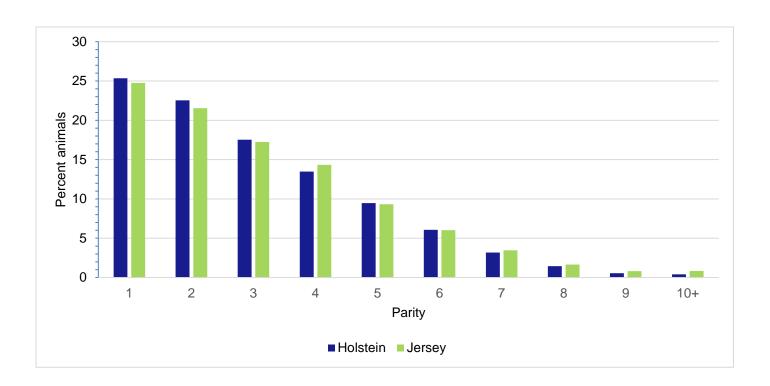


Figure 8: Animals per lactation number

NEW SURVIVAL ABV RESEARCH

New Survival ABV research

Scientists from Agriculture Victoria Research recently analysed herd-life data to enhance the Survival ABV, helping farmers select for longer productive herd life. This work has led to a new model for the Survival ABV that will be implemented by DataGene in December 2025.

A key innovation in the new Survival ABV is the use of a more detailed model that separates survival into two genetically related traits:

- Early Survival survival from first to second lactation
- Late Survival survival from second and later lactations.

This distinction recognises that the reasons cows leave the herd early in life differ from those leading to later culling. Researchers also explored the genetic relationships between survival and other traits, providing new insights into why cows stay or go.

Here, we provide a snapshot from the findings discovered by Majid Khansefid and his co-authors, with more detail available in the <u>full paper</u>.

Overall herd-life

In an analysis of nearly two million cows, average herd-life was 4.11 lactations in Holstein and 4.16 lactations in Jersey (Figure 9). The average lactation number within herds at any given time was similar across breeds, 3.37 for Holstein and 3.34 for Jersey.

"The survival of a cow depends on its ability to live (avoid death) and perform well (avoid being culled)", Khansefid et al, 2023

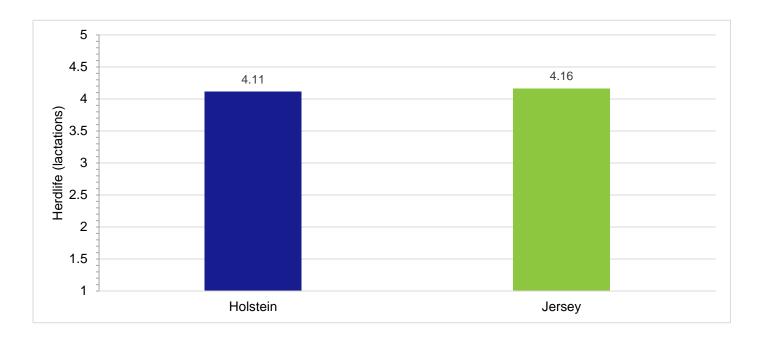


Figure 9: Average herd life (lactations)

NEW SURVIVAL ABV RESEARCH

Early and late survival

Defining early and late survival was a major step forward. Although the traits are genetically correlated (0.77), they are not identical, meaning that selection pressure can be applied to improve both. The study identified trait relationships that help explain genetic differences in survival between early and later stages of life. Figures 10 and 11 illustrate the traits with the strongest relationships with early survival for Holstein and Jersey breeds respectively.

Holstein findings:

- Milk production showed a strong association with early survival, but a weaker relationship later in life.
- Fertility, defined as the interval between calvings, was the strongest factor influencing both early and late survival.
- Workability traits, including likeability, temperament, and milking speed, were also important, especially in the first lactation. As cows aged, correlations with temperament and milking speed weakened slightly, but remained relatively high for likeability.

Jersey findings:

- Early survival was most strongly associated with likeability, production, and udder traits.
- Unlike Holsteins, milk production traits were strongly associated with both early and late survival in Jerseys.
- Type traits had generally stronger associations with survival in Jerseys than in Holsteins. Evidence also suggests deliberate culling of Jersey cows with shorter stature or poor type.

Across both breeds, likeability, pin set, and udder depth were consistently good predictors of survival, and because data for these traits are available early in the first lactation, they are valuable traits to include in the genetic evaluation model for survival. In all DataGene breeding value releases early and late survival are combined in one survival ABV.

For more information on the implementation and expected impact of the new Survival ABV, visit DataGene.com.au.

NEW SURVIVAL ABV RESEARCH

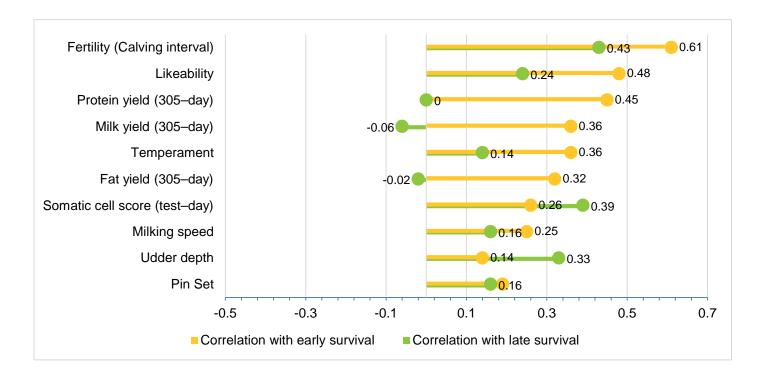


Figure 10: Genetic correlations with early and late survival.

Predictor traits and traits with the strongest relationships with early survival (Holstein)

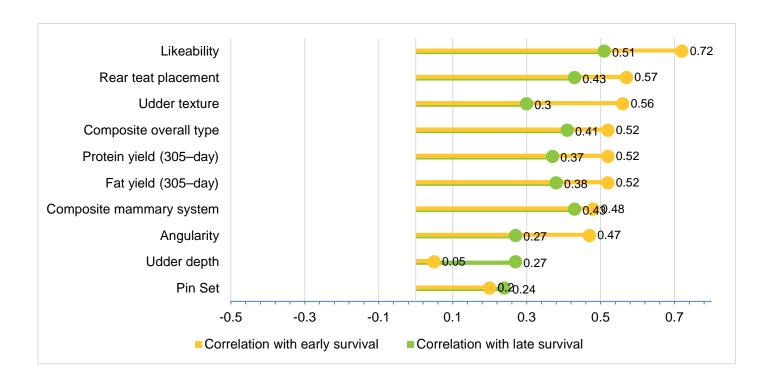


Figure 11: Genetic correlations with early and late survival.

Predictor traits and traits with the strongest relationships with early survival (Jersey)

GENETIC TRENDS

Genetic trends

Young Holstein females that will calve in 2025 are, on average, more than \$100 per cow per year ahead in genetic merit compared with those born just five years earlier. This gain reflects the accelerating genetic trend for the Balanced Performance Index (BPI) over the past decade—a direct result of the breeding decisions made by farmers and bull companies. These decisions have been shaped by the widespread adoption of genomic selection, the introduction of new breeding indices, and a strong, industry-wide commitment to research, development, and extension. Figure 12 highlights some key development milestones for the Australian herd improvement industry that have influenced genetic progress over time.

Genetic progress can be visualised by comparing the average genetic merit of females by birth year. Improving genetic merit for the national breeding objective (increasing net farm profit) remains a key lever for farmers seeking to widen the gap between income and production costs. This objective is expressed as the BPI (Figures 13, 18, 23 for three breeds). Genetic progress for Australia's two additional indices, the Sustainability Index (SI) and Health Weighted Index (HWI) are also shown for three breed groups.

Each year, DataGene reviews genetic trends across all traits, with a selection of highlights shown in Figures 13-26 for Holstein, Jersey and Australian Red cows. This year's report includes the genetic trends for fertility and mastitis resistance that are major contributors to involuntary culling and shorter herd-life. Genetic trends for additional traits and breeds can be obtained by contacting the DataGene team.

Young Holstein females that will calve in 2025 are, on average, more than \$100 per cow per year ahead in genetic merit compared with those born just five years earlier.

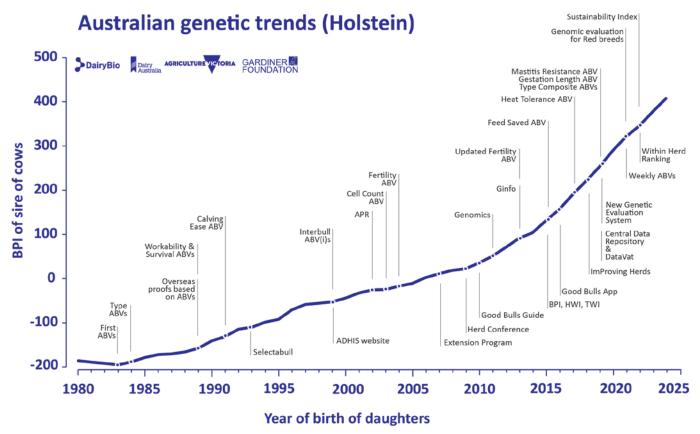


Figure 12: Genetic trend for Balanced Performance Index in Holstein sires of cows

GENETIC TRENDS – HOLSTEIN

Genetic trends – Holstein

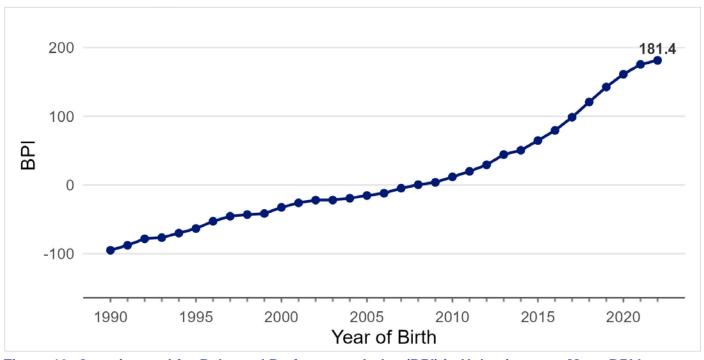


Figure 13: Genetic trend for Balanced Performance Index (BPI) in Holstein cows. Mean BPI by year of birth.

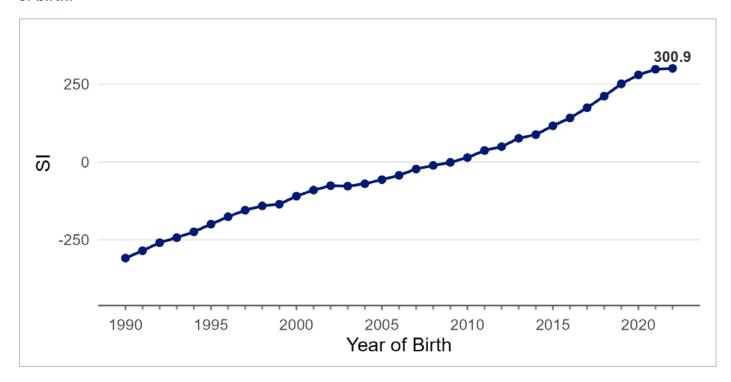


Figure 14: Genetic trend for Sustainability Index (SI) in Holstein cows. Mean SI by year of birth.

GENETIC TRENDS – HOLSTEIN

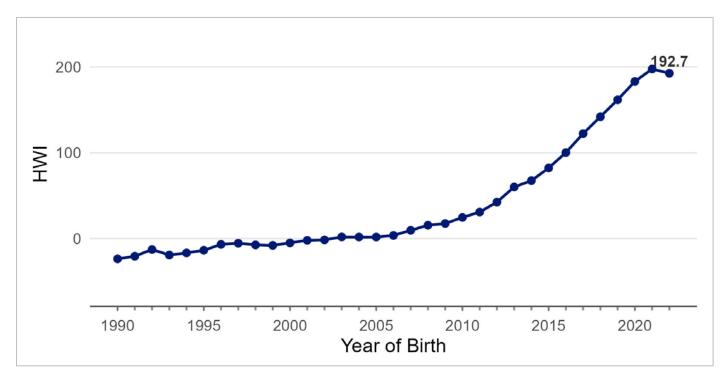


Figure 15: Genetic trend for Health Weighted Index (HWI) in Holstein cows. Mean HWI by year of birth.

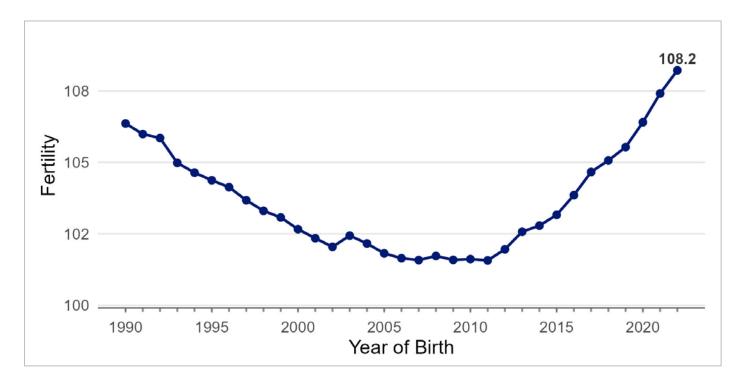


Figure 16: Genetic trend for Fertility in Holstein cows. Mean Daughter Fertility ABV by year of birth.

GENETIC TRENDS – HOLSTEIN

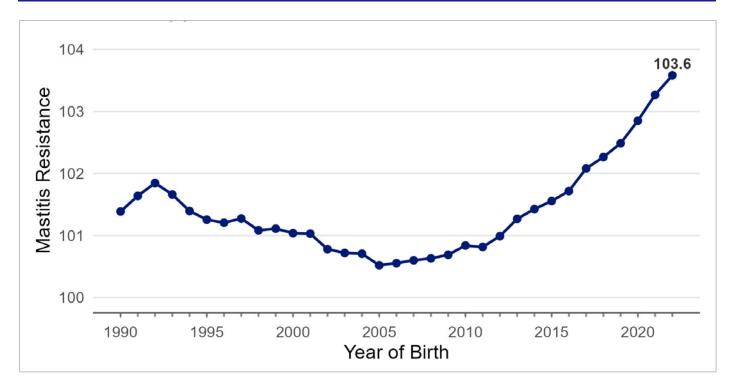


Figure 17: Genetic trend for Mastitis Resistance in Holstein cows. Mean Mastitis Resistance ABV by year of birth.

GENETIC TRENDS – JERSEYS

Genetic trends – Jerseys

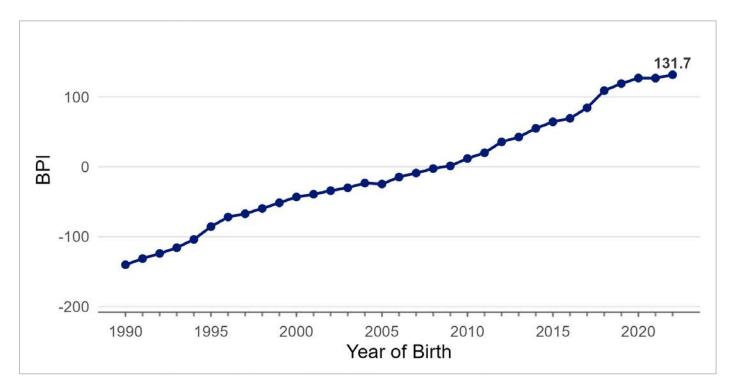


Figure 18: Genetic trend for Balanced Performance Index (BPI) in Jersey cows. Mean BPI by year of birth.

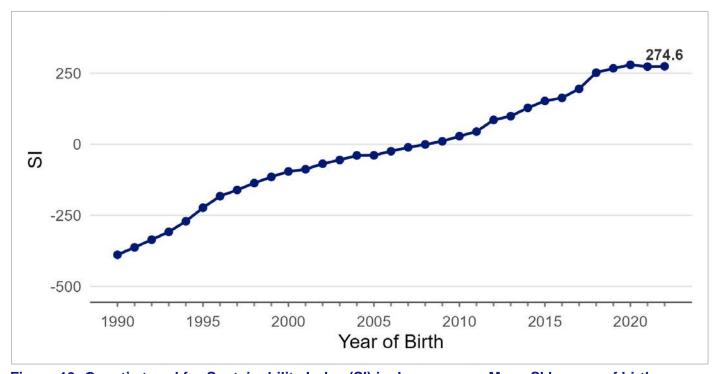


Figure 19: Genetic trend for Sustainability Index (SI) in Jersey cows. Mean SI by year of birth.

GENETIC TRENDS – JERSEYS

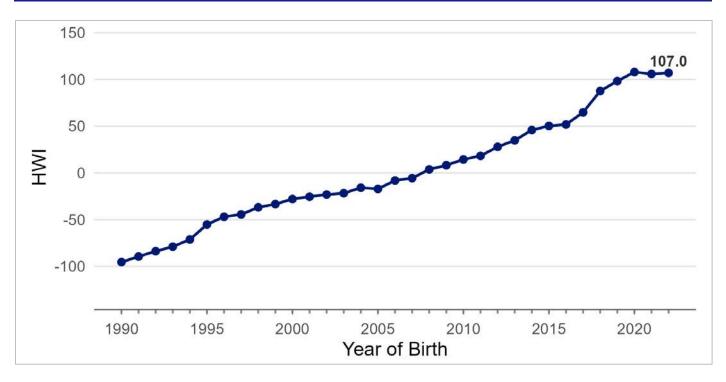


Figure 20: Genetic trend for Health Weighted Index (SI) in Jersey cows. Mean HWI by year of birth

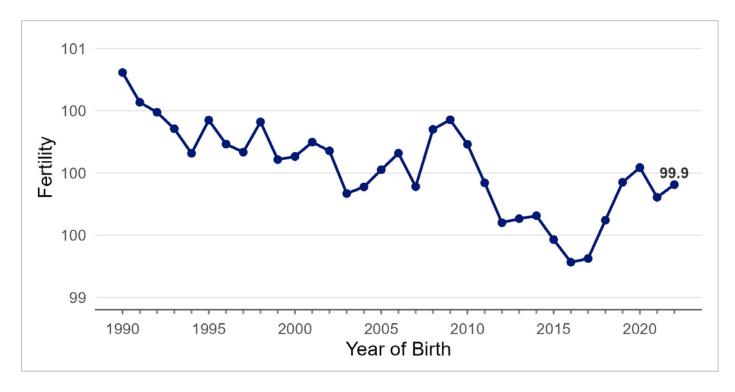


Figure 21: Genetic trend for Fertility in Jersey cows. Mean Daughter Fertility ABV by year of birth

GENETIC TRENDS – JERSEYS

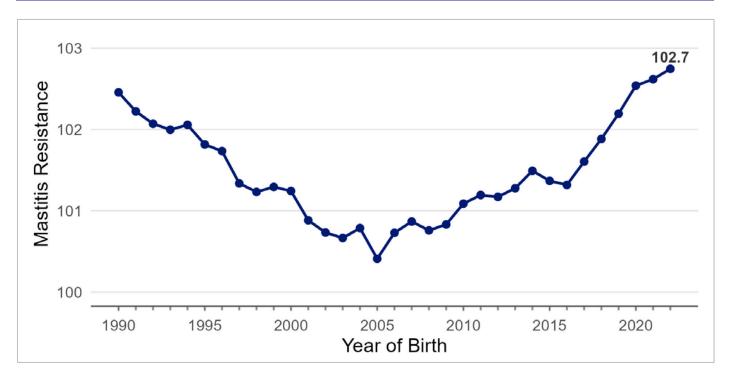


Figure 22: Genetic trend for Mastitis Resistance in Jersey cows. Mean Mastitis Resistance ABV by year of birth

GENETIC TRENDS – AUSTRALIAN REDS

Genetic trends – Australian Reds

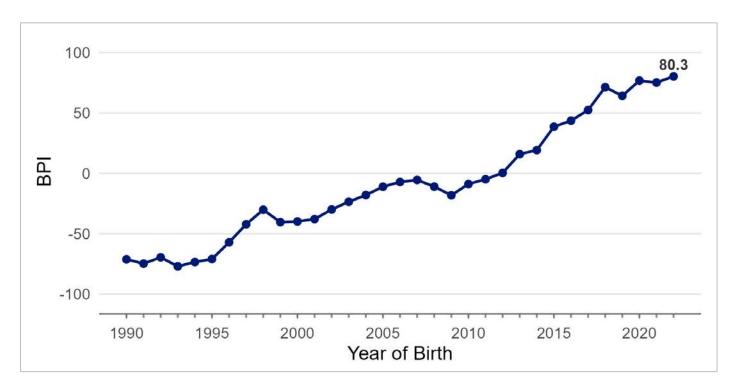


Figure 23: Genetic trend for Balanced Performance Index (BPI) in Australian Red cows. Mean BPI by year of birth

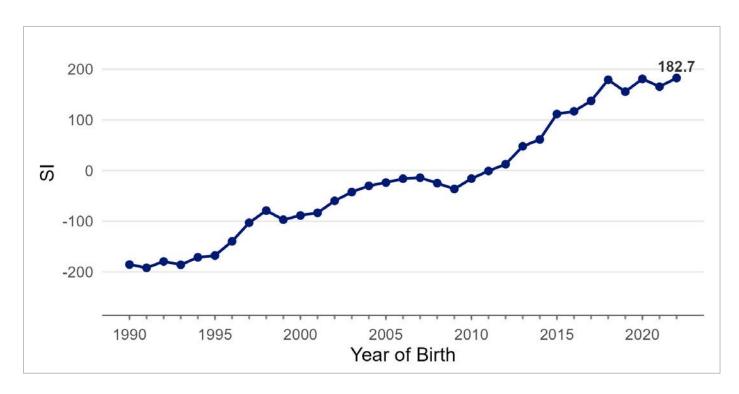


Figure 24: Genetic trend for Sustainability Index (SI) in Australian Red cows. Mean SI by year of birth

GENETIC TRENDS – AUSTRALIAN REDS

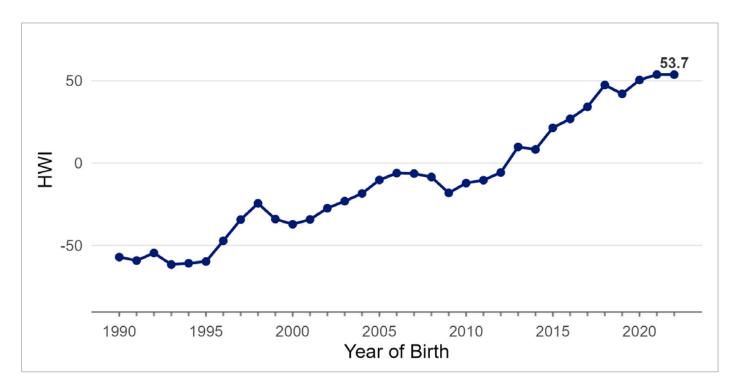


Figure 25: Genetic trend for Health Weighted Index (HWI) in Australian Red cows. Mean HWI by year of birth

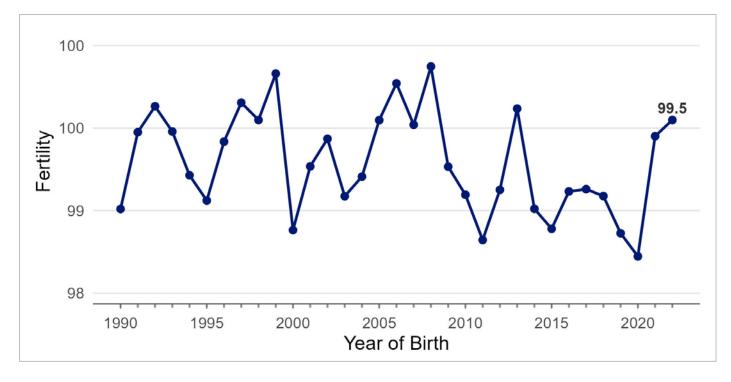


Figure 26: Genetic trend for Fertility in Australian Red cows. Mean Daughter Fertility ABV by year of birth

GENETIC TRENDS – AUSTRALIAN REDS

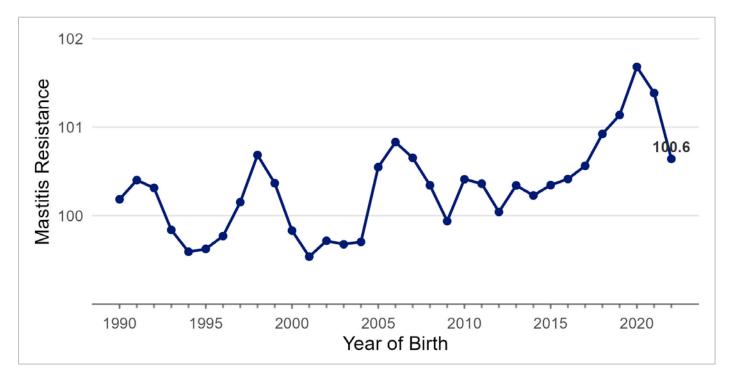


Figure 27: Genetic trend for Mastitis Resistance in Australian Red cows. Mean Mastitis Resistance ABV by year of birth

DataGene Limited

AgriBio

5 Ring Road

La Trobe University

BUNDOORA VIC 3083

1800 841 848

enquiries@datagene.com.au

www.datagene.com.au

ACN 613 579 614

DataGene acknowledges the Traditional Custodians of country throughout Australia and their connections to land, sea and community. We pay our respect to their Elders past and present and extend that respect to all Aboriginal and Torres Strait Islander peoples.

DataGene is an independent and industry-owned organisation responsible for driving genetic gain and herd improvement in the Australian dairy industry and is an initiative of Dairy Australia and industry. This report is published for your information only. It is published with due care and attention to accuracy, but DataGene accepts no liability, if, for any reason, the information is inaccurate, incomplete or out of date whether negligent or otherwise. Copyright © DataGene Ltd. All Rights Reserved. November 2025.