Daughter fertility and survival ABVs

John Morton
Veterinary Epidemiological Consultant
Geelong

Survival ABV

Genetic Progress for Longevity

"Your paper frequently mentions cow survival, this implies that cows leave the herd by dying. Should you be referring to stayability or longevity in the herd rather than survival..."

Survival Longevity ABV

Genetic Progress for Longevity

"Your paper frequently mentions cow survival, this implies that cows leave the herd by dying. Should you be referring to stayability or longevity in the herd rather than survival..."

Breed

Survival ABV

Holsteins

Jerseys

Cow's year of birth

Holsteins

Jerseys

Survival ABV within year of birth

Holsteins

Cows born from 1990 to 1994

Cows born from 2007 to 2010

1. Survival ABVs have increased over time

2. Cow level:

Cows that last longer have higher survival ABVs/cows that have higher survival ABVs last longer

3. Population level:

Survival has decreased over time

Replacement rates (% calvings by 2-year olds) by year

Example herd Seasonal calving 500 cows to calve annually

	Calving period	Calving period	Mating period			Calving period
Cows		500 10 deaths/compulsory culls	490	392 pregnant	387 retained 3 abort 5 culled 98 culled	384 calved
Calves/yearlings	120 reared		120	117 pregnant 3 not pregnant (3%)	1 abort	116 calved as 500

Example herd Seasonal calving 500 cows to calve annually

	Calving period	Calving period	Mating period				Calving period
Cows		500 10 deaths/compulsor culls	y 490	416 pregnant 74 not pregnant (15%)	387 retained 29 culled 74 culled	3 abort	384 calved
Calves/yearlings	120 reared		120	117 pregnant 3 not pregnant (3%)		1 aborts	116 calved

Increased herd reproductive performance:

- 1) Change calving system/start of calving date
- 2) Shorten mating period(s)
- 3) Increase culling pressure
- 4) Reduce replacement rate

	Calving period	Calving period	Mating period			Calving period
Cows		500 10 deaths/compulsory culls	490	416 pregnant	387 retained 3 abort 29 culled 74 culled	384 calved
Calves/yearlings	120 reared		120	117 pregnant 3 not pregnant (3%)	1 aborts	116 calved 500

Increased herd reproductive performance:

- 1) Change calving system/start of calving date
- 2) Shorten mating period(s)
- 3) Increase culling pressure
- 4) Reduce replacement rate**

	Calving period	Calving period	Mating period		Calving period
Cows		500 10 deaths/compulsory culls	490	416 pregnant 9 culled 74 not pregnant (15%)	3 abort
Calves/yearlings	100 reared		100	97 pregnant 3 not pregnant (3%)	96 calved 1 aborts 500

Increases in survival ABV are not increasing longevity, but are these increases causing other benefits?

?Changing which cows are retained

?Retain better cows

?As per genetic correlations

?Culling causes retention of high survival ABV cows

Weightings for survival ABV in BPI and HWI too high?

Genetic correlations for Holstein sires

FAT (MILK (SURV (FERT -(SCC -(0.30 0.67 0.04	0.30 1.00 0.05	0.67 0.05 1.00	0.04	-0.16 -0.12	-0.03 0.08	-0.13
MILK (SURV (FERT -(SCC -(0.67	0.05			-0.12	0.08	$\overline{}$
SURV (FERT -(SCC -(0.04		1.00			0.00	-0.03
FERT -(_	0.11		0.26	-0.13	0.15	-0.05
SCC -(0.16	0.11	0.26	1.00	0.52	0.67	0.33
	0.10	-0.12	-0.13	0.52	1.00	0.43	0.29
MAS -0	0.03	0.08	0.15	0.67	0.43	1.00	0.68
	0.13	-0.03	-0.05	0.33	0.29	0.68	1.00
MSPEED -(0.02	0.12	0.00	0.13	-0.04	-0.15	-0.21
TEMP (0.16	0.18	0.18	0.29	-0.10	0.11	0.00
MAMM (0.00	0.11	0.22	0.41	-0.10	0.23	0.03
UDDEP -(0.19	-0.05	0.06	0.73	0.41	0.55	0.29
OTYPE -(0.01	0.08	0.17	0.33	-0.19	0.18	0.03
PINSET -(0.04	-0.09	-0.05	-0.04	-0.08	-0.14	-0.07
FOREA -(0.23	-0.05	0.01	0.47	0.08	0.28	0.12
LWT (0.10	0.10	0.13	-0.08	-0.35	-0.08	-0.10
FEEDEF -(0.21	-0.23	-0.22	-0.05	0.19	-0.01	0.10
PROTP (0.18	0.26	-0.61	-0.30	0.00	-0.22	-0.07
FATP -(0.35	0.59	-0.78	-0.14	0.03	-0.07	0.03
OFEET_LEG -(0.08	0.08	0.09	0.21	-0.07	0.17	0.01
	0.22	0.30	0.33	0.50	-0.09	0.22	-0.01
EASE (0.09	0.09	0.04	0.30	0.40	0.24	0.13
RUMP -(0.06	-0.04	-0.01	-0.08	-0.24	-0.12	-0.06
DAIRY_S (0.12	0.12	-0.04	-0.50	-0.57	-0.43	-0.26
HEAT_T -0	0.53	-0.32	-0.10	0.22	0.28	0.24	0.17
GEST_L -0	0.22	-0.14	-0.20	-0.28	-0.20	-0.20	-0.07

- 1. Longevity is important for social license
- 2. Lower replacement rates can increase herd profitability and reduce herd carbon emissions
- 3. Longevity will increase only if herd manager chooses to decrease replacement rate

 (or increase herd size with minimal increase in replacement numbers)
- 4. Better repro performance can drive decreased replacement rate (if herd manager chooses that option)
- 5. Thus management plus daughter fertility ABV (rather than survival ABV) are the key for increased longevity
- 6. Need better understanding:
 - a) effects of increased survival ABV on herd age structure, cow quality, profit
 - b) with increased reproductive performance:
 - i. relative merits of increased culling versus decreased replacement rate
 - ii. how herds can safely move to lower replacement rates
 - iii. ?strategies to reduce disease risks in middle-aged cows
- 7. In the interim, keep modest selection pressure on survival ABV

Daughter fertility ABV trends

How long are our cows lasting?

		Last calving date for herd
Cow 1		
Birth date	24feb2012	
Calved	10apr2014	
Calved	16apr2015	
Calved	24mar2016	
Calved	25mar2017	
Culled	03aug2017	
Cow 2		
Birth date	06feb2012	
Calved	19apr2014	
Calved	16apr2015	
Calved	27mar2016	
Calved	25mar2017	
Calved	08jun2018	
		30sep2018
Cow 3		
Birth date	19sep2019	
Calved	08aug2021	
Calved	14aug2022	
		30sep2022

Conclusion: Use survival analysis rather than averages

Sire daughter fertility ABVs

Cow daughter fertility ABVs

Herd daughter fertility ABV

Herd 6-week in-calf rate

Herd benefits (\$ and other)

Other non-production traits:

Monitoring
Early detection and action if decline

For example:
Heat tolerance ABV
Sustainability Index
Cow contentment ABV??
etc
etc

