Australian Dairy Herd Improvement Report 2011

ADHIS is an Australian Dairy Farmers Ltd initiative that receives the majority of its funding from Dairy Australia through the Dairy Services Levy. ADHIS acknowledges the contribution of the Victorian Department of Primary Industries.

Enquiries

ADHIS Pty Ltd ABN 97 006 475 378 Level 2, Swann House 22 William Street Melbourne Victoria 3000 T 03 8621 4240 F 03 8621 4280 dabernethy@adhis.com.au www.adhis.com.au

National Herd Improvement Association of Australia Inc. Reg No. A0008711E Unit 1/112 Synnot Street Werribee VIC 3030 T 03 9742 7244 F 03 9742 7696 carol@nhia.org.au www.nhia.org.au

Photo acknowledgements: Thank you to Stuart Mackie for the front cover shot and to all of the farmers who took time away from their businesses to enthusiastically participate in the photographs that appear in this report.

Copyright ADHIS Pty Ltd 2011. All rights reserved ©.

This Report is published for your information only. It is published with due care and attention to accuracy, but ADHIS and NHIA accept no liability if, for any reason, the information is inaccurate, incomplete or out of date whether negligent or otherwise.

All intellectual property rights in Australian Breeding Values (ABV[™]) detailed in this publication are owned by ADHIS Pty Ltd. Neither the ABVs nor any part of this publication may be reproduced without the prior written permission of ADHIS Pty Ltd. Permission to reproduce or copy will not be given by ADHIS Pty Ltd where the proposed reproduction or copy may, in the sole opinion of ADHIS Pty Ltd, result in a use of the ABV that is likely to mislead or confuse stakeholders in the Australian dairy industry.

Contents

2011 in review	2
NHIA Chairman's report	
ADHIS Chairman's report3	
NHIA activities4	
ADHIS activity report	
ADHIS Board and Committees8	
Partner projects	.10
InCalf	
Countdown Downunder 12	
Dairy Futures CRC 13	
National Herd Recording Statistics 2010-2011	.15
2011 Australian Breeding Values	.23

NHIA Chairman's report

By Gordon Stewart NHIA Chairman

The statistics contained in this publication are a reflection of the production capabilities of Australian dairy farms in 2011. They give us a wealth of information about our industry and, I believe, that it is important that we take some time to examine them closely.

It is also important to reflect on how these statistics were collected and the efforts of so many people to make this report a reality.

The process starts with the dairy farmer who makes the extra effort to herd test his or her cows, and who, in return, receives extremely valuable information upon which to base operational management decisions. Next is the herd test service provider, which may also function as a data processing centre (DPC) who delivers equipment, perhaps assists with sample collection, picks up the milk samples and analyses them, finally delivering a report back to the farmer within a day or two. The DPCs then forward the data on all the herd tested cows from all over Australia to the Australian Dairy Herd Improvement Scheme (ADHIS) staff who receive it, and filter it through evermore complex computer systems with the cooperation of the Department of Primary Industries (Victoria).

Finally, the outcome of this process is the publication of valuable industry statistics such as those contained in this report, but, more importantly, for the release of Australian Breeding Values (ABVs). ABVs are published twice yearly to identify those AI bulls that have a superior ability to transmit the best genetics to their offspring. The new Good Bulls Guide is a convenient source of ABVs.

Being able to identify the bulls that perform best in Australian conditions is one of the key components in boosting the productivity on Australian dairy farms. Essentially, the collection of herd test data is the foundation upon which the genetic evaluation system is built. Unfortunately, some people are making the mistaken assumption that, in the current era when genomics is rapidly becoming the new industry buzzword, there may be less need to gather herd test data. Nothing could be further from the truth.

Genomics is teaching us that the important traits in dairy cows – protein production for example – are controlled by many genes, each having small effects. We are learning that the interactions between traits are very complex and non-linear. As Dr Denis Funk said at the Herd '11 Conference, "All this says is that the genomic estimates that we have are only as good as the data we have to arrive at those estimates. Further, the data needs to be refreshed and updated frequently with updated phenotypes to be current and relevant for our breeding programs today. To make genetic improvement, whether with traditional genetic programs or genomics, requires volumes of data."

The members of NHIA, and its forerunners, have played an integral part in the collection of herd test data since 1923. Table 13, in this publication that shows that in 1930, 2,984 Victorian dairy farmers herd tested 91,328 cows which gave 2,295 litres of milk in an average herd size of 31 head. Compare that to 428,660 cows in 2011 giving 6,588 litres in herds averaging 211 head. The statistics can help us track the development of our industry and provide benchmarks for the future.

Herd test data is a vital part of the foundation of the dairy industry and NHIA members can be proud of the contribution they make.

Going forward, I believe that we need to apply significantly more industry investment in the collection of data, not for its own sake, but in order to provide Australian dairy farmers with even more valuable tools in the future. The future will belong to those who understand how to use data in innovative ways to make good, timely and profitable decisions.

ADHIS Chairman's report

It's almost thirty years since the ADHIS Board met for the first time at Dairy Industry House. I can just imagine the voices around the table talking about the need for high quality data, fail-safe data systems, independent genetic evaluation and the ability to participate in and implement leading edge research. As you will see in this report, our herds have come a long way since that time. For example cows are producing an average of 176 kg more milksolids each year. About one third of this improvement is the result of better genetics identified by Australian Breeding Values.

The challenges faced by ADHIS are similar to those of years ago – but in a very different environment. On our farms, we expect more of our herd, our people and our businesses. The need for data is increasing faster than our ability to collect it – but the solution starts at home. Sometimes, we need to remind ourselves of the benefit of consistently high quality herd recording, animal health and mating data to our own businesses. The bonuses are reliable Australian Breeding Values so we can find the best bulls for our herd and effective R&D backed by a high quality database of herd records.

ADHIS are responding to today's industry-level challenges. ADHIS has identified upgrades to strengthen its systems within a fast-paced, technically challenging environment. While it seeks support for further improvements, some big steps have been achieved in 2011. For example, ADHIS data systems have grown to handle tens of thousands of pieces of genomic data for individual animals – over and above the traditional yield, classification, health and mating data. As of April 2011, genomic data is routinely integrated into genetic evaluations giving farmers opportunities for faster genetic gain across a wide range of traits. New quality control systems are in place and are working. Outcomes from large scale research projects at the Dairy Futures CRC are being implemented within ADHIS systems. 1600 farmers and their advisers have participated in genetics workshops, conferences and on-farm days. The Good Bulls Guide is now regularly referenced both within the herd improvement sector and more broadly across a range of industry extension programs.

I wish to recognise the significant contributions made by ADHIS stakeholders who have contributed to this list of achievements. In particular, I thank Dairy Australia, Department of Primary Industries-Victoria, the Dairy Futures CRC, data processing centres, bull companies and breed societies for their ongoing collaboration and support.

On behalf of the Board, I thank Wes Judd for his leadership and advocacy for ADHIS. Wes chaired the ADHIS Board through the implementation of the new APR index, commercialisation of genomics and launch of the Good Bulls Guide. Wes stepped down in July 2011 to support his family as they recover from the Queensland floods.

As I look ahead to my first full year as Chair of ADHIS, I am eager to work with our stakeholders to ensure ADHIS provides you with information you need to get you where you want to be.

By Adrian Drury ADHIS Chairman

NHIA activities

Dairy farmers today rely on current information more than ever. Every day critical management decisions have to be made on farm which can mean the difference between profit and loss in these volatile times. The best decisions are those that are made on factual information. Whether it is on which cows to sell or keep, stocking rates, dry matter intakes, mastitis treatment regimes, breeding programs – on a dairy farm, knowing the facts makes a difference.

By Carol Millar NHIA General Manager

Herd testing is a vital tool

The best way for dairy farmers to understand exactly what is happening on their farm is to herd test regularly.

Each test is a benchmarking opportunity to work out which cows are making a profit and which are not and then to be able to do something about it. It is the best and most effective way of managing individual cow cell counts (ICCC) and identifying those cows that are contributing most to high bulk milk cell count (BMCC), which may be preventing the farm from receiving premium milk prices.

As the statistics in this report will show, herd sizes continue to get bigger on Australian dairy farms. With increasing herd size brings the challenge of still being able to manage cows on an individual basis. A farmer does not treat the whole herd if the BMCC blows out, he/she needs to find the individual cows responsible. Equally, the whole herd does not get pregnant as a group, each individual cow needs to be in good post-partum health and bred to an Al sire or bull in order to achieve pregnancy. The most successful dairy farmers manage their cows individually within the context of the herd. Herd recording and herd testing is the most effective way to achieve this goal of identifying individual cows and managing their care appropriately.

Heifer identification for export

One of the important advantages in identifying individual animals on the herd test system is that all stock on the farm is assured of having parentage information. Therefore the compilation of 3-generation pedigrees for export buyers is a very simple process. The ready identification of heifers for export is a by-product of participating in herd test for most dairy farmers.

Australia is blessed with having one of the most disease-free environments in the world and this is a natural advantage in attracting foreign buyers for our livestock. Increasingly these buyers are looking for heifers that have parentage information. Any farmer that participates in herd testing is poised to take advantage of this growing demand.

Genomics requires more data

Australian scientists have been at the forefront of the mapping of the cattle genome and the application of genomics. The dairy industry stands at the brink of many new applications which are expected to substantially speed up genetic gain in dairy animals. But as we utilize genomic information more extensively in breeding programs, we will have an ongoing need for additional performance information which arises out of herd testing. NHIA members will continue to play an important role in the collection of this data.

2011 in review

Industry education and training

Skills shortages are acknowledged as one of the herd improvement industry's limiting factors to improving efficiency and adoption of new technologies. The herd test sector, in particular, suffers from a lack of a defined skills training pathway. The NHIA has as one of its strategic priorities the improvement of skills training for the herd test industry.

In recent years, NHIA has become the leading provider of Artificial Insemination (AI) training in Victoria along with our industry partners the National Centre for Dairy Education Australia (NCDEA) and Rural Industries Skills Training (RIST). It has become apparent in the delivery of this training that the industry needs to prioritize the production of a new AI Manual to provide farmers and trainees with an effective learning resouce that encapsulates best practice in this area. Recent fertility studies indicate a wide variation in conception rates on farm which would indicate that there is considerable room for improvement in breeding management practices of which AI technique is an important component. NHIA will continue to advocate this as a priority for the dairy industry.

ADHIS activity report



By Daniel Abernethy, ADHIS General Manager

ADHIS marked a significant year with the release of the first genomic based breeding values (ABV(g)s) as part of the Holstein ABV release in April 2011. It culminated the 10 years of research here in Australia supported by the Dairy Futures CRC , Department of Primary Industry – Victoria (DPI-V), ADHIS and importantly dairy industry funding through Dairy Australia.

Genomics is a new technology that incorporates DNA information to improve the reliability of ABVs for younger bulls and herd recorded cows. The addition of genomics delivers better information on traits of particular interest, like fertility and longevity. By Spring 2011, farmers were able to utilise the benefit of genomics by having more young sires with ABV(g)s to choose from, more proven sires with reliable daughter fertility breeding values, more confidence in progeny test programs utilizing ABV(g) data in their selection and the ability to better select cows from which to breed the next generation. In essence farmers can build their herds faster and with more confidence by using genomics.

The introduction of genomics has been the most significant enhancement to the Australian Breeding Value(ABVs) system since the first release of ABVs in 1982. The time honoured tradition of dairy cattle breeding has been revolutionised by innovative thinkers and the development and adoption of this new technology.

6

Good Bulls Guide – April & August 2011

The first introduction of the Good Bulls Guide in August 2010 was followed by releases in April and August 2011 . The Good Bulls Guide ranks our most superior sires across APR profit , production , longevity , type, mastitis resistance , reliability and for the first time a ranking of top young Genomic sires. The industry endorsement of the Good Bulls Guide can now be seen in Al Sire Catalogues and general industry advertisements promoting the superior genetic value of individual bulls. Recognising the influence of genetics on a range of farm management areas, the Good Bulls Guide messages have been integrated into key industry projects such as Dairy Australia's Countdown Down Under and InCalf . The industry can have confidence that the Good Bulls Guide is an independent ranking of the most superior sires from both Australian and International sources .

Cow ABV and ABV(g)s

In March 2011, Holstein Australia and ADHIS announced a new genotyping service for cows and bulls. Through Holstein Australia, users of this service received the first cow ABV(g)s following the August 2011 release. Through the use of genomics, the genetic merit of a heifer calf can be calculated with the same level of reliability as a well-recorded cow with 7 lactations of data. Cows are now routinely evaluated for dozens of traits including production, health, workability and type traits as well as the APR.

Herd 11 Conference Ballarat – March 2011

In March ADHIS partnered with NHIA and Holstein Australia to host the bi-annual Herd Improvement Industry conference held in Ballarat. The conference featured the key topics of genomics , Dairy Futures CRC research , fertility and reproductive performance , data collection and managing change. Presentations from key speakers from Australia, Belgium , Canada , USA , and New Zealand allowed participants the opportunity to update their understanding and knowledge on vital dairy industry research .

2011 in review

Fertility – ABVs do work

Recent research conducted by the Dairy Australia In-Calf project group, supported by ADHIS, has confirmed the accuracy of Daughter Fertility ABVs to predict the reproductive performance of the daughters of proven sires . As demonstrated in Figure 1, cows with a higher genetic merit for ABV for fertility had 13% greater 6-week in-calf rate and 8% lower not-in-calf rate compared to the lower genetic merit counterparts.

ADHIS continues to assist the InCalf project to improve reproductive performance of Australian dairy herds by supporting the publication of daughter fertility ABVs and semen fertility values.

Herd Improvement Data Collection

The issue of data and improving data capture has been on the agenda for many years. In 2002 ADHIS commenced the "Data Capture Project" with the support of DPI Victoria. This project looked at the way data is currently captured on-farm and potential opportunities to improve the capture and accuracy of data especially relating to health and fertility traits. Over the last two years the herd improvement industry has reviewed the value proposition for improving data collection, quality & quantity, transfer & access in the Australian dairy industry. From these investigations an initiative to develop a pre-competitive dairy data repository was recommended. This recommendation outlines an industry infrastructure approach to support data and its utilisation. Currently this recommendation is being reviewed by Dairy Australia. It is expected that detail on the support for such as initiative will be outlined in the new year. ADHIS, NHIA and Holstein Australia strongly support this initiative and the potential benefits this initiative could deliver to industry.

It is however recognised that some data is currently recorded but not submitted to ADHIS. This breakdown in dataflow will not be directly fixed by the implementation of a centralised data repository. ADHIS also recognised that recommendations from the 2002 Data Capture Project warrant reviewing. As a result ADHIS commissioned a review seeking to understand current data practices and processes, and potential improvements to data collection and transfer protocols.

The output of this review which complements the industry initiative on data infrastructure is currently under consideration with outcomes to be discussed with industry in the new year.

R,D&E Activity Summary

ADHIS continues to invest in a range of research, development, extension, education and communication activities. Table 1 highlights the impact of several 2011 developments.

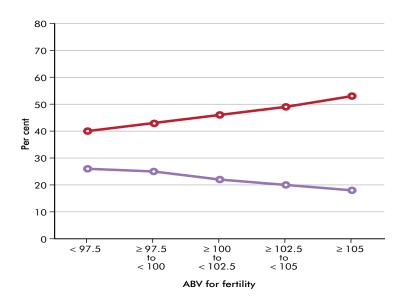


Figure 1: Reproductive performance is higher in cows with higher ABVs for fertility.

6-week in-calf rate
 Not-in-calf by 21 weeks

Rates are adjusted for source of data, herd (random effect), year, age at calving and calving to first service, Holstein-Friesian cows only

2011 in review

Table 1: A range of ADHIS	activities in 2011.	
Development	Activity	Impact
10,000 and Jernomic projects	ADHIS has supported the Dairy Futures CRC in implementing the 10,000 Holstein cow and Jernomic projects. Cows with very well recorded histories were selected from the ADHIS database for genotyping.	More reliable genomic based breeding values for farmers and bull companies.
Building the reference population	ADHIS undertook an industry drive to locate semen from both past and present AI bulls that will be used as an important part of the Australian genomic reference population .	More reliable genomic based breeding values for farmers and bull companies.
NCDEA Diploma of Agriculture delivery	Support NCDEA in the development and delivery of 'Develop and Implement a Breeding Strategy' unit from the Diploma of Agriculture program.	Farmers are supported with regional delivery of a formal training program in applied dairy cattle breeding.
New APR rankings for cows and herds.	Top herds and cows are now ranked by Australian Profit Ranking (APR) instead of the production-only Australian Selection Index (ASI)	The APR index more accurately reflects the balance of production and non-production traits that contribute to on-farm profit.
Top cow and top herd lists.	Fees were removed from download of top cow and top herd lists.	Farmers and their advisers can easily identify the country's top herds and top cows, at no cost.
Good Bulls Guide	Published in April and August 2011	Farmers can select Australian and overseas bulls based on top ABV and ABV(i) rankings.
DPI-V Service Provider Seminars	Hosted by the DPI-V Dairy Services Division, ADHIS participated in two series of seminars focusing on genomics (Autumn '11) and fertility (Spring '11)	Service providers have local opportunities to hear the latest in world of genetics.
Genetic Progress Report	A tool is under development that will provide within herd genetic trend data to assist in benchmarking bull selection practices.	After its launch in 2012, farmers will be able to check the genetic direction of their herds and make decisions about the effectiveness of bull selection practices.
Daughter Fertility	Research is underway by the Dairy Futures CRC and its	Bull companies and farmers will be able to better
research	partners DPI-V and ADHIS to develop a multi-trait fertility model.	select for improved fertility by using more reliable daughter fertility ABVs in younger bulls.
Improved Preliminary	Improvements were made to the models used to blend	Bull companies can make better decisions
Breeding Values (PBVs)	ABV(i) and early Australian data in the calculation of preliminary breeding values.	because they have access to more accurate data prior to official ABV releases.
Straw Calculator	In conjunction with InCalf, a web-based tool was developed to calculate the number of AI straws required to achieve sufficient herd replacements.	Farmers and their advisers are reminded to use sufficient AI semen to produce good quality replacements.

ADHIS Board and Committees

ADHIS Board of Management

The Board met six times during the year to progress ADHIS' Strategic Plan, including implementation of the new Australia Profit Ranking, genomics and extension activities.

Members: Wes Judd (Chairman – retired July 2011), Adrian Drury (Chairman appointed July 2011), Peter Aldridge, John Harlock, Stewart McRae, Stuart Tweddle, Lyndon Cleggett, Ivan Jones, Daniel Abernethy (General Manager and Secretary).

ADHIS staff

Daniel Abernethy, ADHIS General Manager Sally Bernardo, Executive Assistant

Genetic Evaluation National Data and Database Service

Gert Nieuwhof, Geneticist and Team Leader

Kon Konstantinov, Statistician Judith Schweitzer,

Information Scientist

Paul Koh, Data and Services Manager Erica Jewell, Data and Services Manager Education and Extension

Michelle Axford, Project Leader

Peter Williams, Extension Officer

Industry consultation

Stakeholder meetings

Effective industry consultation underpins the ADHIS Strategic Plan. ADHIS achieves industry consultation across its activity areas through its committees, specific meetings with individuals and organisations, and periodic stakeholder meetings.

In addition to this, ADHIS hosted a number of technical industry meetings specifically for AB company and breed society managers to report on recent research and discuss future initiatives. These meetings provide ADHIS with a forum to discuss genetics in detail and for open discussion. The technical meetings were implemented after a review of communication activities aimed at improving stakeholder engagement.

Genetics Committee

Members

Prof. Mike Goddard (Chairman, University of Melbourne), Assoc. Prof. Julius Van der Werf (University of New England), Dr Bruce Tier (University of New England), Dr Rob Woolaston, Dr Mekonnen Haile-Mariam (University of Melbourne), Dr Kevin Beard (ADHIS Consultant), Dr Gert Nieuwhof (ADHIS), Dr Kon Konstantinov (ADHIS), Daniel Abernethy (ADHIS).

The Genetics Committee brings together scientists from a number of organisations to review genetic developments within ADHIS. Further support to this committee is gratefully received from Dr Gerhard Moser, Dr Jennie Pryce, Dr Phil Bowman and Assoc. Prof. Ben Hayes.

Records Standards Committee

Members

Mr Ivan Jones (ADHIS, Chairman), Mr John Stevenson (Dairy Express), Mr Peter Nish (Tasherd), Mr Frank Treasure (HISWA and CHISWA), Dr Mike Larcombe (Mistro Group), Mr David Parkinson (AUSherd), Dr Gert Nieuwhof (ADHIS), Mr Paul Koh (ADHIS), Mr Daniel Abernethy (ADHIS)

The Records Standards Committee provides representatives from data processing centres a forum to discuss data issues relating to herd improvement records and genetic evaluation.

Type Assessment Committee

On an annual basis, meetings are held with Holstein Australia and Jersey Australia, two breed societies that provide linear type data to ADHIS. Linear Type Evaluations for the coming year are reviewed, with improvements made to the organisational aspects of data collection that should improve the amount of data collected.

The Genomics Communication Group

Members

Mrs Michelle Axford (ADHIS, Chairperson), Ms Belinda Griffiths (DF CRC), Dr David Nation (DF CRC), Dr Mick Blake (Dairy Australia), Kelly Charlton (Dairy Australia), Dr Ben Hayes (DPI-V), Dr Jennie Pryce (DPI-V), Mr Peter Thurn (Genetics Australia), Dr Matthew Shaffer (Holstein Australia), Mr Scott Joynson (Jersey Australia), Ms Carol Millar (NHIA), Mr Daniel Abernethy (ADHIS).

The Genomics Communication Group meets regularly to develop and implement activities to support the implementation of genomics within the Australian dairy industry.

Current reproductive performance and changes over time

Dr Barry Zimmermann Project Leader InCalf 03 9620 7283 bzimm@incalf.com.au

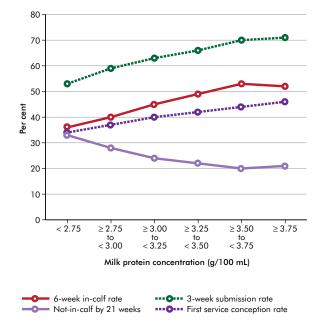
Farm profitability, cow health and longevity are highly desirable features of dairy farming and they all rely on good reproductive performance.

In 2010, the fertility of Australian dairy herds came under close scrutiny with concerns raised about dramatic declines in the fertility of some herds. There were many different views about the reasons for the apparent decline such as the 'Holstein-isation' of the Australian dairy herd, higher milk production and increases in herd sizes.

To find out how reproductive performance had changed and to explore the possible factors involved, InCalf commissioned a data analysis from 74 herds which had complete reproductive records over several years. Herds from participating veterinary practices and the ADHIS database that had accessible early pregnancy testing records were selected as this enabled direct measurement of 'actual' 6-week in-calf rates. Approximately 30,000 cows and 85,000 lactations were analysed over the 10 years from 2000 to 2009.

Current reproductive performance

Figure 1: The reproductive performance of 74 seasonal and split calving herds from Victoria and Tasmania in 2009.



Source: InCalf Fertility Data Project 2011

Factor	Measure		on cow llity*
		Markedly higher	Markedly lower
ABV for fertility	When higher	1	
Calving to MSD	When longer	1	
Age	2-7 year old cows	1	
Milk production-	Very low levels		1
volume, fat and protein yield	Very high levels		1
Milk protein	Higher concentration	1	

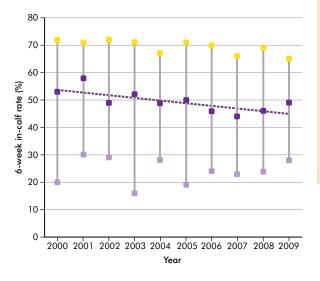
Source: InCalf Fertility Data Project 2011

Figure 2: Reproductive performance is higher in cows with higher milk protein concentrations.

Rates are adjusted for source of data, herd (random effect), year, age at calving and calving to first service, Holstein-Friesian cows only

Source: InCalf Fertility Data Project 2011

Changes in reproductive performance over time


Thirty of the study herds had 8 of 10 years data between 2000 and 2009, enabling trends in reproductive performance over time to be analysed.

Reproductive performance declined in these herds by about 1% per year for 6-week in-calf rate, 0.6% per year for submission rate and 0.7% per year for conception rate.

Importantly, there were large differences between herds in each year (see vertical bars in Figure 3). In fact, the spread herds in any particular year was far greater than the decline over the 10 year period.

In the typical 6-week AI mating period the decline in reproductive performance was much more attributable to the decline in conception rates than submission rates. No single factor could explain the decline over the 10 year period, but combinations of factors did in part.

Figure 3: Measure of 6-week in-calf rates from 2000 to 2009. The vertical lines show the large spread between the lowest and highest herd in each year. The dashed line is the line of best fit for median 6-week in-calf-rates over the period and shows the decline of the typical herd.

Typical herd: median, i.e. middle herd

- Lowest herd
 Highest herd
- --- Decline of typical herd 6-week in-calf rate

Source: InCalf Fertility Data Project 2011

The results of this study will greatly assist industry planning (through Dairy Moving Forward) and InCalf's on-going program of work.

There are complex and potentially interacting factors causing the declines in submission and conception rates. High priority should be given to understanding the factors involved and devise appropriate management strategies that industry can use to improve reproductive performance.

More detailed information is available in the InCalf Fertility Data Project 2011 full and short reports on the Dairy Australia website, www.dairyaustralia. com.au/incalf

In summary

Significant findings were:

- Reproductive performance was lower than in the original InCalf study in 1996-1998.
- Cows with higher milk protein concentrations had higher fertility (Figure 2).
- There was huge variation in herd reproductive performance (Figure 3).
- The calving pattern of herds was important: fertility was higher in cows with longer calving to mating start date intervals.
- High-producing cows (more than 8,000 litres) had lower fertility.
- The age profile of herds was important with fertility being lower in cows older than 7 years.
- ABVs for fertility work: cows with higher ABVs for fertility had better reproductive performance.
- In this study Holstein-Friesians had lower in-calf rates than Jerseys and all combinations of Jersey/ Holstein crosses. However fertility decreased at a similar rate in Holstein-Friesians, Jerseys and Jersey-Holstein first cross over the 10 years.

Dairy Australia Countdown Downunder

Select bulls that increase mastitis resistance

Dr John Penry Project Leader Countdown Downunder 03 9620 7283 john@camperdownvet. com.au

The difference between the best Holstein bull (Cell Count ABV of 183) and the worst bull (Cell Count ABV of 5) is estimated to be \$119 net profit per cow per year

More information: Countdown Downunder Fact Sheet H: The impact of genetics on mastitis and cell counts at www.dairyaustralia. com.au/countdown Better udder health increases dairy farm profitability and underpins the demands of domestic and export markets for high quality dairy produce. There is no 'fix' for poor quality milk that leaves the farm.

Countdown's objective is to help Australian dairy farms improve their mastitis control and reduce the average bulk milk cell count of the national herd.

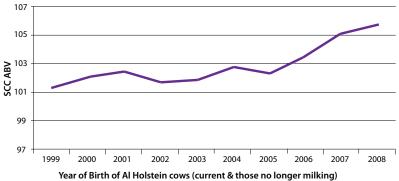
Genetics is one of the tools now available to farmers to reduce mastitis risk. Most mastitis control is based on the management of cows and their environment to minimise the number of bacteria around the teats and maximise teat health. But each cow's chance of developing mastitis is also influenced by her genetic makeup.

Some bulls produce daughters which are more resistant to mastitis than others. While the heritability of mastitis resistance is relatively low at 10 per cent, the benefits are permanent and accrue with each generation. Farmers who select dairy bulls with mastitis resistance can help fine-tune their mastitis management in the long term.

The Australian Dairy Herd Improvement Scheme (ADHIS) has been collecting cell count information from all test day records since the mid 1990s. This cell count information is used to calculate Australian Breeding Values for mastitis resistance (cell count ABVs) for Al bulls.

Improving mastitis resistance involves selecting bulls with a cell count ABV which is more than 100 – the higher the cell count ABV, the greater the mastitis resistance. The Average Bulk Milk Cell Count of Australian dairy herd was 220,000 cells/mL for the 2010 calendar year. This was calculated using the International Dairy Federation recommended method.

In 2002 cell count ABVs were incorporated in the Australian Profit Ranking (APR) because mastitis lowers farm profitability. Last year Countdown supported the change to the formula used to calculate the APR, to place more emphasis on mastitis resistance (and daughter fertility and survival). This means that even farmers who are not actively choosing bulls for mastitis resistance will do so if they choose bulls with a high APR.


An increase in the average cell count ABV of the Australian herd-recorded cows has been observed in the last 10 years. Figure 1 shows the increasing genetic trend for mastitis resistance in Holstein cows with Al sires.

Without cow cell count figures available to the industry from milk recording herds, cell count ABVs for bulls would not be possible and the gains made in mastitis resistance may not have occurred.

The development of the Good Bulls Guide by ADHIS has made it easier for farmers to choose appropriate bulls for their herds.

Countdown recommends that for little or no extra cost, farmers can now make a long-term difference to the level of mastitis in their herds by selecting bulls from the mastitis resistance list in the Good Bulls Guide.

> Figure 1 : The genetic trend for mastitis resistance in Holstein cows in the Australian herd has risen significantly in the past 5 years.

Dairy Futures CRC Report

The Dairy Futures Cooperative Research Centre (CRC) is a unique collaboration between industry partners and research organisations, which attracts large-scale support from state and federal governments and from dairy levy funds from Dairy Australia. All participants have made significant contributions in the past 12 months, and \$23 million was invested (cash and in-kind) in 2010/11.

Breeding with genomics

The CRC's first major outcome was the delivery of DNA marker information to ADHIS so that it is included in a routine fashion into all Holstein genetic evaluations.

The second phase of research is designed to increase the value of genomics in a number of ways:

- Confirm the value of using lower-cost tests with fewer DNA markers. It has been demonstrated that extra value can be added to a lower-cost test (known as "imputing extra data") which means that it can be used effectively as a test for the genetic merit of cows. This has brought down the price of testing cows by two-thirds.
- Boost the reliability of genomic predictions. The priority is to build a national DNA database of animals with excellent records under Australian farming conditions. Bulls are the most informative as they have large numbers of

daughters and all project partners are actively looking to expand the number of bulls on record. However, large-scale increases in records could only be achieved through sampling cows. The 10,000 Holstein cow project searched the national herd for cows with high quality records and diverse bloodlines and will be completed by December 2011.

Expand the genomic test to include the Jersey breed. This project involved close cooperation with Jersey Australia to collect semen straws of Jersey bulls and collect DNA samples from large numbers of cows from their members' herds. These samples are being processed over summer with the aim of being introduced into breeding values in April 2012.

Has Australian genomic technology made an impact in 2011?

Yes. There are three major impacts in 2011. The first impact is that young bulls entering progeny test (PT) programs have been assessed using genomics. This will increase the quality of PT teams and ultimately increase the quality of bulls that graduate from PT programs.

The second impact is that there is a new category of bull genetics available – young bulls that do not yet have any daughters in milk. This includes a selection

Table 1: Improvements in reliability of ABVs as data is added during the life of a bull.										
Trait			Reliability							
	Young bull (parent average ABV)	Genotyped young bull ABV(g)	First crop bull publishable ABV	First crop bull with genomics (publishable ABV with genomics)						
Protein kg	28	56	85	85						
Overall Type	21	42	74	75						
Survival (longevity)	20	50	54	61						
Fertility	18	38	54	58						
Average reliabilities of 320	young bulls monitored fro									

Source: Implementation of Genomics in Australia, Nieuwhof et al, 2010 (full paper available at www.adhis.com.au)

Dr David Nation, CEO, Dairy Futures CRC

of premium sires and means that farmers can access elite genetics earlier. If this trend continues it will dramatically speed up genetic progress by reducing the generation interval of dairy herds.

The third impact is that it provides important information for bulls that have graduated from progeny test programs. For example, it is common for new graduates to not have a fertility breeding value due to lack of data. DNA results have added an important new data source and now there are more than twice as many bulls in the Top 50 merit list that have fertility breeding values.

The CRC is about research partnerships

The strength of the CRC is based on the organisations that participate in its activities. Worldclass research is undertaken by the Department of Primary Industries (Victoria) and supported by project partners that include ADHIS, Holstein Australia, Jersey Australia, Genetics Australia and Dairy Australia.

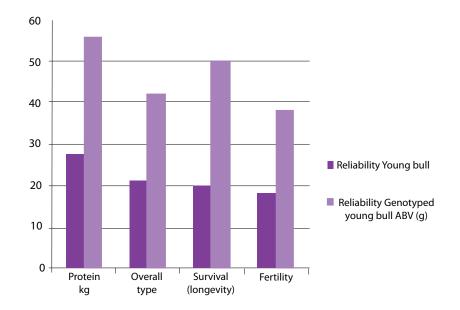


Figure 1: Improvements in reliability of ABVs as data is added during the life of a bull. Graph depicts average reliabilities of 320 young bulls monitored from parent average ABV to first crop proof.

A/Prof. Ben Hayes and Brett Mason from the DPI Victoria Biosciences research team collecting tail hair samples from John Bilney's Jersey herd, Mirboo North.

Table 1 : Nationa	Table 1 : National and State Totals and Production Averages.												
State	Number	Herds and Cows Recorded					Production Averages						
	of Herds	Included	Excluded	Total	Herd	Milk	Fat	Fat	Protein	Protein	Lactation	proc mor	
		in	from	Cows	Size	litres	%	kg	%	kg	Length	reco	
		Averages	Averages								days	(Da	
Victoria	2,036	309,937	118,723	428,660	210.5	6,588	4.1	268	3.4	222	319	20	
New South Wales	486	73,131	26,930	100,061	205.9	7,485	3.9	291	3.3	244	341		
Queensland	288	26,653	19,106	45,759	158.9	6,348	3.9	249	3.3	207	331		
South Australia	230	40,672	8,039	48,711	211.8	7,524	3.9	290	3.3	246	339		
Tasmania	190	39,505	10,451	49,956	262.9	6,213	4.1	257	3.4	214	295		
Western Australia	129	28,777	3,666	32,443	251.5	7,774	3.8	293	3.2	247	334		
Australia	3,359	518,675	186,915	705,590	210.1	6,813	4.0	273	3.3	228	323		
Victorian regions													
Northern	744	98,883	38,214	137,097	184.3	6,682	4.1	273	3.3	223	326		
Eastern	716	117,090	36,447	153,537	214.4	6,447	4.1	262	3.4	217	316		
Western	576	93,964	44,062	138,026	239.6	6,666	4.1	271	3.4	228	315		

On average, herd recorded cows produced 32% more than non herd recorded cows (Dairy Australia *In Focus* 2011 and ADHIS 2011)

Table 1a: N	Table 1a: National totals and production averages 1999 to 2011.											
Year		Herd	s and cows reco	Production averages								
	Number	Included in	Excluded from	Total cows	Herd size	Milk litres	Fat %	Fat kg	Protein	Protein	Lactation	
	of herds	averages	averages						%	kg	length days	
1999/2000	6,976	947,104	81,129	1,028,233	147.4	5,691	4.0	230	3.3	187	302	
2000/2001	7,405	940,712	286,248	1,226,960	165.7	5,682	4.0	229	3.3	186	302	
2001/2002	6,930	888,497	303,269	1,191,766	172	6,027	4.0	243	3.3	200	307	
2002/2003	6,358	842,113	335,786	1,177,899	185.3	5,877	4.0	235	3.3	193	303	
2003/2004	5,704	722,074	298,727	1,020,801	179	6,048	4.0	242	3.3	201	310	
2004/2005	5,080	725,374	224,352	949,726	187	6,257	4.0	251	3.3	207	314	
2005/2006	4,746	701,852	208,536	910,388	191.8	6,402	4.0	255	3.3	212	316	
2006/2007	4,462	655,212	222,592	877,804	196.7	6,452	4.0	257	3.3	216	312	
2007/2008	3,966	578,263	207,199	785,462	198	6,596	4.0	264	3.3	220	321	
2008/2009	3,779	566,029	206,694	772,723	204.5	6,645	4.1	270	3.4	223	318	
2009/2010	3,503	522,869	201,400	724,269	206.8	6,680	4.0	270	3.3	223	323	
2010/2011	3,359	518,675	186,915	705,590	210.1	6,813	4.0	273	3.3	228	323	

Table 2: Number of	Table 2: Number of herds in fat production categories by region.											
State	Total		Average fat production (kg per cow)									
	herds	< 125	125-149	150-174	175-199	200-224	225-249	250-274	275-299	300-324	> 324	
Victoria	2,036	40	31	71	105	181	285	352	325	215	122	
New South Wales	486	4	9	12	18	47	50	83	74	70	55	
Queensland	288	2	6	13	23	38	33	23	23	11	9	
South Australia	230	1	4	4	6	23	27	39	40	37	40	
Tasmania	190	0	1	3	20	26	32	26	21	19	12	
Western Australia	129	0	0	0	2	6	14	16	27	21	32	
Australia	3,359	47	51	103	174	321	441	539	510	373	270	
Victorian regions												
Northern	744	12	9	20	26	56	90	122	123	85	44	
Eastern	716	13	9	28	35	73	120	142	122	67	33	
Western	576	15	13	23	44	52	75	88	80	63	45	

Table 3: Number of herds in protein production categories by region.											
State	Total	Average protein production (kg per cow)									
	herds	< 100	100-124	125-149	150-174	175-199	200-224	225-249	250-274	275-299	> 299
Victoria	2,036	39	43	104	173	329	378	323	210	87	41
New South Wales	486	4	11	14	37	58	78	73	79	51	17
Queensland	288	2	5	14	34	43	40	24	12	4	3
South Australia	230	1	1	9	14	36	44	39	38	27	12
Tasmania	190	0	4	8	32	37	21	21	18	11	8
Western Australia	129	0	0	2	3	11	20	28	21	27	6
Australia	3,359	46	64	151	293	514	581	508	378	207	87
Victorian regions											
Northern	744	9	15	31	61	116	121	114	79	28	13
Eastern	716	16	12	36	67	132	155	122	69	24	9
Western	576	14	16	37	45	81	102	87	62	35	19

44% of Australia's 1.6	Table 4: Prod	Table 4: Production averages by age group.									
million* milking cows were	Age group	Number of	r of Production averages								
herd recorded in 2010/11		cows	Milk litres	Fat %	Fat kg	Protein %	Protein kg	length days			
(Dairy Australia <i>InFocus</i> 2011, ADHIS 2011).	z ical Ulu	85,232	6,042	3.97	240	3.34	202	329			
ADIII5 2011).	3 Year Old	90,437	6,698	3.97	266	3.37	226	327			
	Mature Cow	343,006	7,035	4.02	283	3.33	235	321			
	Total	518,675	6,813	4.01	273	3.34	228	323			

49% of Australia's 6883	Table 5: Proc	able 5: Production averages by age group and mating type.									
farms were herd recorded	Age group	Number	Average	fat (kg)	Average protein (kg)						
in 2010/11		of cows	Artificially bred stock	Naturally bred stock	Artificially bred stock	Naturally bred stock					
(Dairy Australia <i>InFocus</i> 2011, ADHIS 2011).		85,232	244	227	206	189					
Adrii 2011).	3 Year Old	90,437	274	248	233	209					
	Mature Cow	343,006	295	266	245	220					
	Total	518,675	281	259	235	214					

	Table 6 : Production avera	iges by percentage o	f artificially bred co	ows in herds.	
On average an AI cow is	Percentage of artificially	Number of herds		Production average	
\$53 more profitable each	bred cows in herd		Milk litres	Fat kg	Protein kg
year than a naturally bred counterpart.	< 10	500	6,113	247	205
(HaileMariam & Goddard,2008)	10-19	169	6,335	251	212
(Hallewallant & Goddard,2008)	20-29	167	6,309	256	211
	30-39	180	6,670	266	221
	40-49	233	6,615	267	221
	50-59	307	6,759	269	225
	60-69	340	7,033	278	232
	70-79	397	7,030	280	235
	80-89	451	7,019	282	234
	> 89	615	7,170	288	241
	Total	3,359	6,813	273	228

Table 7: Production a	verages by l	oreed.					
Breed	Number of			Produ	uction average	S	
	cows	Milk litres	Fat %	Fat kg	Protein %	Protein kg	Lactation
							length days
Holstein	355,036	7,259	3.88	282	3.28	238	327
Jersey	56,055	5,196	4.82	251	3.73	194	313
Holstein/Jersey Cross	22,697	6,006	4.40	264	3.52	212	308
Guernsey	1,216	5,566	4.32	240	3.43	191	327
Ayrshire	2,814	5,538	4.11	228	3.39	188	312
Dairy Shorthorn	296	5,219	3.90	204	3.31	173	317
Illawarra	5,090	6,322	4.00	253	3.32	210	318
Unknown Breed	62,775	6,300	4.01	253	3.34	210	315
Aust Red Breed	8,993	6,055	4.11	249	3.45	209	313
Brown Swiss	3,533	6,154	4.04	249	3.43	211	327
Other	170	5559	4.57	246	3.44	190	326
Total	518,675	6,813	4.01	273	3.34	228	323

Table 8: Pro	duction ave	erages by mo	onth of calvi	ng.					
Month of	Number of	% of total		Pro	duction aver	ages		Lactation	44% of herd-recorded cows calved in the months
calving	COWS		Milk litres	Fat %	Fat kg	Protein %	Protein kg	length days	of July/August/September
January	14,444	2.8	7,063	3.90	276	3.30	233	342	in 2010/11
February	22,830	4.4	7,265	3.91	284	3.32	241	340	
March	45,685	8.8	7,262	3.95	287	3.34	243	335	
April	51,706	10.0	7,180	3.95	284	3.35	241	332	
Мау	47,764	9.2	7,083	3.98	282	3.36	238	327	
June	41,608	8.0	6,873	4.01	276	3.37	231	319	
July	56,457	10.9	6,580	4.06	267	3.38	223	315	
August	93,518	18.0	6,485	4.08	265	3.37	218	309	
September	78,028	15.0	6,596	4.04	267	3.32	219	318	
October	36,579	7.1	6,559	3.99	262	3.27	214	324	
November	16,857	3.3	6,682	3.95	264	3.26	218	335]
December	13,199	2.5	7,072	3.89	275	3.25	230	344]
Australia	518,675	100	6,813	4.01	273	3.34	228	323	

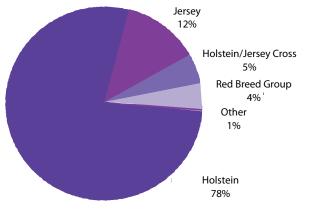
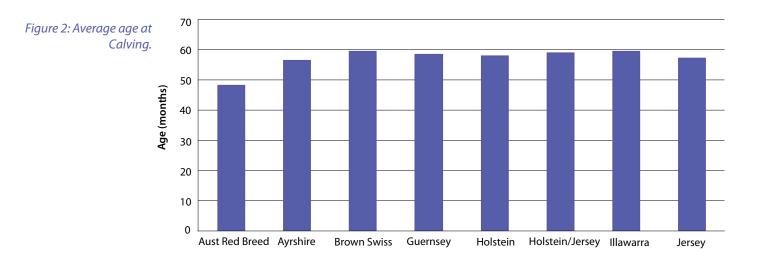
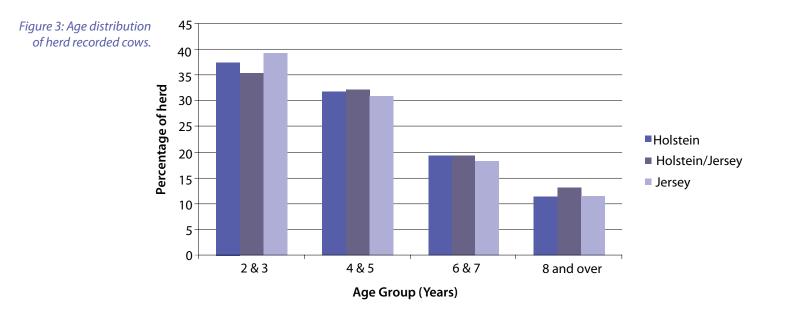




Figure 1: Distribution of breeds.

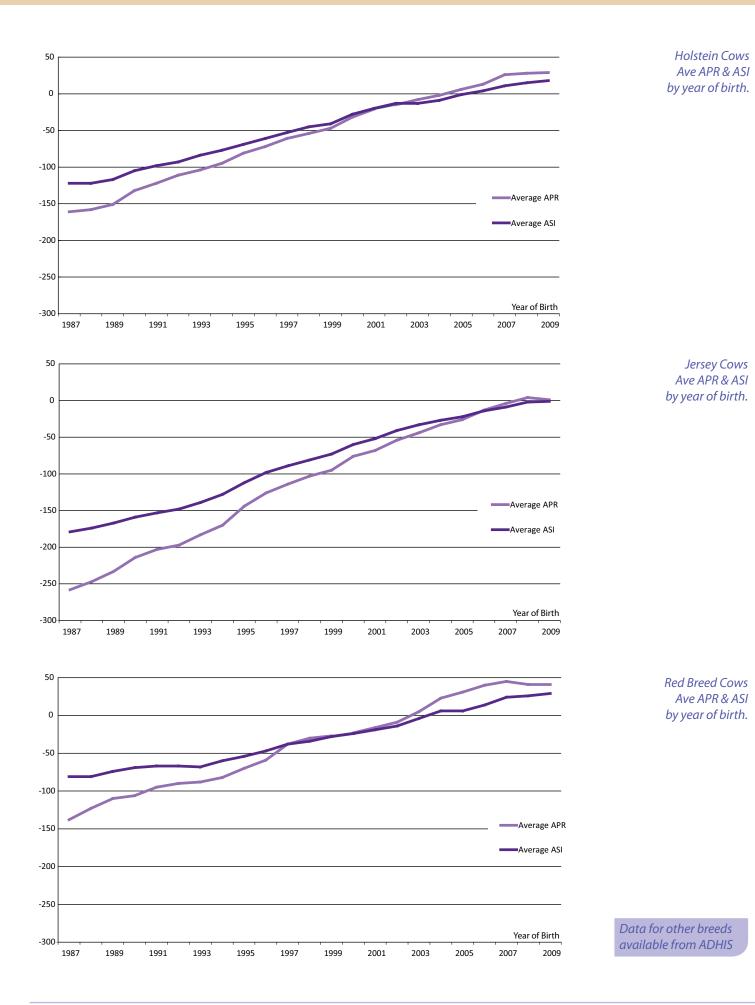
31% of the Holstein herd is at least 6 years of age, 30% of the Jersey herd is at least 6 years of age

Table 9: Product	ion averages by	breed, age gr	roup, mat	ing type	and re	gistration.		
Breed	Туре	Number of			Proc	luction ave	rages	
		COWS	Milk	Fat %	Fat kg	Protein	Protein	Lactation
			litres			%	kg	length days
Holstein	2-year old	61,136	6,411	3.82	245	3.28	210	332
	3-year old	66,657	7,087	3.84	272	3.31	234	332
	Mature cow	227,243	7,538	3.91	295	3.27	247	325
	Total	355,036	7,259	3.88	282	3.28	238	327
	Artifically bred	245,072	7,435	3.87	288	3.28	244	330
	Naturally bred	109,964	6,867	3.91	269	3.28	225	323
	Pure bred	58,048	8,149	3.78	308	3.22	262	348
	Grade	296,988	7,086	3.91	277	3.29	233	324
Jersey	2-year old	11,074	4,688	4.78	224	3.67	172	319
	3-year old	10,267	5,082	4.85	246	3.75	190	314
	Mature cow	34,714	5,392	4.83	260	3.73	201	310
	Total	56,055	5,196	4.82	251	3.73	194	313
	Artifically bred	37,667	5,283	4.88	258	3.75	198	313
	Naturally bred	18,388	5,020	4.71	236	3.67	184	313
	Pure bred	13,719	5,564	4.89	272	3.75	209	326
	Grade	42,336	5,077	4.80	244	3.72	189	309
Holstein/Jersey	2-year old	4,246	5,298	4.39	233	3.52	186	315
Cross	3-year old	3,518	5,863	4.42	259	3.57	209	311
	Mature cow	14,933	6,241	4.40	275	3.51	219	305
	Total	22,697	6,006	4.40	264	3.52	212	308
	Artifically bred	10,552	6,254	4.43	277	3.55	222	309
	Naturally bred	12,145	5,790	4.38	254	3.49	202	307
	Pure bred	0	0	0	0	0	0	0
	Grade	22,697	6,006	4.40	264	3.52	212	308
Guernsey	2-year-old	183	5,094	4.29	219	3.39	173	328
	3-year-old	252	5,387	4.35	234	3.42	184	330
	Mature cow	781	5,734	4.31	247	3.44	197	325
	Total	1,216	5,566	4.32	240	3.43	191	327
	Artifically bred	627	5,815	4.38	255	3.43	200	334
	Naturally bred	589	5,300	4.24	225	3.43	182	318
	Pure bred	273	5,457	4.28	234	3.36	183	340
	Grade	943	5,597	4.33	242	3.45	193	323
Ayrshire	2-year-old	475	4,683	4.20	197	3.39	159	317
	3-year-old	658	5,226	4.14	216	3.44	180	312
	Mature cow	1,681	5,902	4.08	241	3.37	199	311
	Total	2,814	5,538	4.11	228	3.39	188	312
	Artifically bred	1,541	5,732	4.14	237	3.42	196	315
	Naturally bred	1,273	5,303	4.07	216	3.35	177	310
	Pure bred	839	6,030	4.11	248	3.35	202	325
	Grade	1,975	5,329	4.11	219	3.40	181	307

69% of herd-recorded	Table 9: Product	ion averages by	breed, age gr	oup, mat	ing type	and reg	gistration	(continued).	
Holsteins, 67% of herd- recorded Jerseys, 46% of	Breed	Туре	Number of			Prod	luction ave	rages	
herd-recorded Holstein-			COWS	Milk	Fat %	Fat kg	Protein	Protein	Lactation
Jersey crosses and 91% of herd-recorded Australian				litres			%	kg	length days
Red Breeds were bred via	Illawarra	2-year-old	702	5,737	4.04	232	3.34	191	329
Artificial Insemination		3-year-old	1,053	5,833	4.06	237	3.41	199	319
		Mature cow	3,335	6,600	3.97	262	3.30	218	315
		Total	5,090	6,322	4.00	253	3.32	210	318
		Artifically bred	2,529	6,617	3.95	262	3.30	218	320
		Naturally bred	2,561	6,031	4.04	244	3.35	202	315
		Pure bred	1,752	6,687	3.95	264	3.28	220	320
		Grade	3,338	6,131	4.03	247	3.34	205	316
	Unknown Breed	2-year-old	4,379	5,696	3.97	226	3.33	190	320
		3-year-old	4,895	6,296	3.95	248	3.35	211	318
		Mature cow	53,501	6,350	4.02	255	3.34	212	315
		Total	62,775	6,300	4.01	253	3.34	210	315
		Artifically bred	1,616	6,805	3.88	264	3.32	226	325
		Naturally bred	61,159	6,287	4.02	252	3.34	210	315
		Pure bred	0	0	0	0	0	0	0
		Grade	62,775	6,300	4.01	253	3.34	210	315
	Aust. Red Breed	2-year-old	2,395	5,472	4.17	228	3.42	187	318
		3-year-old	2,326	6,102	4.09	250	3.47	212	313
		Mature cow	4,272	6,356	4.11	261	3.46	220	310
		Total	8,993	6,055	4.11	249	3.45	209	313
		Artifically bred	8,223	6,089	4.12	251	3.46	210	313
		Naturally bred	770	5,689	4.05	230	3.39	193	308
		Pure bred	879	7,429	3.83	284	3.45	256	328
		Grade	8,114	5,906	4.15	245	3.45	204	311
	Brown Swiss	2-year-old	568	5,287	4.10	217	3.44	182	340
		3-year-old	726	5,732	4.00	229	3.42	196	322
		Mature cow	2,239	6,510	4.04	263	3.42	223	325
		Total	3,533	6,154	4.04	249	3.43	211	327
		Artifically bred	2,263	6,154	4.11	253	3.45	212	327
		Naturally bred	1,270	6,153	3.92	241	3.39	209	326
		Pure bred	1,042	6,313	4.03	254	3.44	217	340
		Grade	2,491	6,087	4.05	246	3.42	208	321
	Other Breeds	2-year-old	74	5,012	4.00	200	3.32	166	337
		3-year-old	85	5,422	3.88	211	3.32	180	321
		Mature cow	307	5,401	4.16	225	3.35	181	316
		Total	466	5,343	4.14	219	3.36	179	320
		Artifically bred	203	6,134	3.84	236	3.30	203	332
		Naturally bred	263	4,732	4.31	204	3.39	160	312
		Pure bred	47	4,328	4.05	175	3.25	141	339
		Grade	419	5,457	4.08	223	3.35	183	318

Table 10: Distribution of calv	/ings b	y mor	nth and	d regio	n.							
State				Percen	tage of	cows tl	nat calv	ed each	month			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Victoria	1	3	8	11	10	9	13	20	16	6	2	1
New South Wales	6	8	10	9	9	8	9	10	9	7	6	6
Queensland	7	9	10	10	10	9	9	7	8	7	6	6
South Australia	5	7	11	11	9	7	7	10	14	9	6	4
Tasmania	1	2	5	5	2	1	6	36	30	11	2	1
Western Australia	8	10	13	10	8	6	6	9	11	8	6	6
Australia	3	4	9	10	9	8	11	18	15	7	3	3
Victorian regions												
Northern	1	2	10	13	7	3	7	23	21	9	2	1
Eastern	1	2	7	9	7	8	17	25	16	6	1	1
Western	1	4	8	11	17	17	14	12	9	4	2	1

Table 11: Production	on averages	of stud cow	s.				
Breed	Number of			Pi	roduction ave	rages	
	COWS	Milk litres	Fat %	Fat kg	Protein %	Protein kg	Lactation length days
Holstein	58,048	8,149	3.78	308	3.22	262	348
Jersey	13,719	5,564	4.89	272	3.75	209	326
Guernsey	273	5,457	4.28	234	3.36	183	340
Ayrshire	839	6,030	4.11	248	3.35	202	325
Illawarra	1,752	6,687	3.95	264	3.28	220	320
Aust Red Breed	879	7,429	3.83	284	3.45	256	328
Brown Swiss	1,042	6,313	4.03	254	3.44	217	340
Total	76,552	7,586	3.99	298	3.32	250	342


Table 12: Production	averages	of artificially	v bred stu	d cows.			
Breed	Number			P	Production ave	erages	
	of cows	Milk litres	Fat %	Fat kg	Protein %	Protein kg	Lactation length days
Holstein	46,687	8,214	3.77	310	3.22	265	348
Jersey	10,903	5,655	4.89	276	3.75	212	325
Guernsey	156	5,695	4.23	241	3.34	190	342
Ayrshire	458	6,358	4.04	257	3.33	212	329
Illawarra	900	7,046	3.86	272	3.24	228	327
Aust Red Breed	827	7,496	3.82	287	3.45	258	328
Brown Swiss	690	6,357	4.04	257	3.45	219	342
Total	60,621	7,685	3.98	302	3.33	254	343

The production of protein by Victorian herd recorded cows has lifted by almost 20% since 1990.

Over the past decade, 32% of productivity gains achieved have been the result of genetic improvement.

	Table 13: Victor	rian producti	on averages	1930/1931	- 2010/20	11.			
ł	Year	Total herds	Total cows	Herd size		Pro	duction ave	rages	
					Milk litres	Fat %	Fat kg	Protein %	Protein kg
	1930/1935	2,984	91,328	31	2,295	4.7	107		
	1935/1940	2,324	80,883	35	2,210	4.9	108		
	1940/1945	1,082	39,368	36	2,154	4.9	105		
	1945/1950	2,329	90,015	39	2,301	5.0	114		
	1950/1955	3,192	141,387	44	2,284	5.0	114		
	1955/1960	3,461	187,306	54	2,485	5.1	126		
	1960/1965	4,003	248,791	62	2,643	5.0	132		
	1965/1970	5,041	368,300	73	2,793	4.9	137		
	1970/1975	4,314	382,925	89	2,942	4.7	139		
	1975/1980	2,456	256,744	105	3,159	4.5	143		
	1980/1985	3,913	423,120	108	3,471	4.5	155		
	1985/1990	4,399	527,240	120	4,047	4.4	180	3.3	134
	1990/1991	4,402	568,885	129	4,245	4.4	186	3.4	142
	1991/1992	4,061	517,760	128	4,477	4.4	196	3.4	150
	1992/1993	4,293	552,445	129	4,708	4.4	205	3.4	158
	1993/1994	4,606	604,160	131	4,962	4.3	212	3.3	166
	1994/1995	4,591	574,674	125	4,976	4.2	210	3.3	164
	1995/1996	4,685	606,198	129	5,142	4.2	215	3.3	169
	1996/1997	4,928	619,470	126	4,984	4.2	208	3.3	163
	1997/1998	4,328	624,428	144	5,084	4.1	208	3.3	167
	1998/1999	4,156	641,106	154	5,350	4.1	220	3.3	177
	1999/2000	3,904	622,281	159	5,570	4.1	227	3.3	184
	2000/2001	4,267	761,219	178	5,527	4.0	223	3.3	182
	2001/2002	4,198	757,029	180	5,969	4.0	240	3.3	198
	2002/2003	3,831	738,329	193	5,705	4.0	230	3.3	187
	2003/2004	3,414	624,002	183	5,841	4.0	236	3.3	194
	2004/2005	3,079	586,566	191	6,083	4.0	245	3.3	202
	2005/2006	2,933	572,906	195	6,205	4.0	248	3.3	206
	2006/2007	2,775	554,136	200	6,245	4.0	250	3.4	209
	2007/2008	2,431	484,030	199	6,423	4.0	259	3.3	215
	2008/2009	2,313	478,612	207	6,458	4.1	266	3.4	218
	2009/2010	2,127	437,811	206	6,443	4.1	265	3.4	217
	2010/2011	2,036	428,660	211	6,588	4.1	268	3.4	222

2011 Australian Breeding Values – Genetic Trends

2011 Australian Breeding Values – Good Bulls Guide

	loistein Pr	ofit (Aug 2011)		L		PRO	FIT	PRODUC	TION				LONGE	VITY		TYPE		
PROFIT RANK	O I I I I I I I I I I I I I I I I I I I	BULL NAME	GENETIC CODES	GENOMICS INCLUDED	AUSTRALIAN PROVEN OR INTERNATIONAL	PROFIT \$	RELIABILITY	PRODUCTION	RELIABILITY	AUSTRALIAN Daughters	AUSTRALIAN HERDS	FOREIGN Daughters First	SURVIVAL	RELIABILITY	OVERALL TYPE	MAMMARY SYSTEM	RELIABILITY	SOURCE
1	ROUMARE	ROUMARE			A	332	88	261	94	206	58		107	77	108	107	92	CRV
2	29H012470	INDIJKS BABYLON			A	295	77	198	84	70	33		104	62	102	102	74	ABS
3	USEAGE	KAARMONA CALEB			A	269	79	206	86	92	45		106	64	100	106	76	GA
4	DELSANTO	MANNA FARM DEL SANTO		g	A	266	77	240	86	83	39		102	57	113	110	62	GA
5	7H9321	RALMA GOLD CROWN			Т	263	56	173	65			328	107	51	106	106	62	WW
6	29H013664	MORNINGVIEW LEVI			I	263	56	165	63			154	106*	55	105	104	61	ABS
7	GGGUARINI	GUARINI-ET	TV		I	262	56	163	64			142	107*	52	111	112	61	ABS
8	VOUSTERMAN	VOUSTER			1	256	59	189	71			105	102	48	102	100	59	AGI
9	NZGMINTED	FAIRMOUNT MINT-EDITION			I	253	61	193	69			86	103	43	102	103	63	LIC
10	CBTIERGAN	BALLYCAIRN TIERGAN	TLTV		I	251	57	173	68			58	107	47	110	111	61	ALT
11	HOACRESEIGHT	CROCKETT-ACRES EIGHT			I	248	58	146	69			94	107	49	101	100	61	SEI
12	ROSEO	ROSEO JOC			1	247	74	139	77			19191	105*	68	98	103	74	AG
13	GGGUNNAR	GUNNAR-ET		ΤV		243	56	163	64			117	107*	49	114	115	58	AB
14	ALTACROCKETT	CROCKETT-ACRES OTTO	TVTL		1	239	54	143	63			105	106	50	103	101	60	ALT
15	29H013053	GRAN-J OMAN MCCORMIC			1	237	55	121	64			136	107	51	107	106	60	ABS
16	QUINTY	KAARMONA CARBASAR		g	A	236	77	189	82	77	31	100	102	66	107	106	79	GA
17	FARMDEALER	MANNA FARM DEALER	CV	9	A	236	78	180	86	88	39		102	62	110	114	75	ALT
18	PORT	PERFECT PARTNERS LANCELOT PORT	00		A	230	76	189	84	70	31		107	60	102	104	72	AB
19	29H011932				A	234	55		64	70	31	129	-			-		
		MORNINGVIEW LEGEND	TI TV					170					106	50	106	102	59	AB
20	COGENTTWIST	COGENT TWIST	TLTV			233	59	166	70			79	106	48	106	102	62	ALT
21	GDDANILLO	DANILLO				233	60	148	70			232	107	48	111	112	63	CR
22	NZGMILLER	GLENMEAD MILLER			A	232	82	162	91	123	26		102	66	98	99	77	LIC
23	CRVOMANOSCAR	D OSCAR				232	58	146	67			158	104*	52	103	100	58	CR\
24	ALTACOLIN	BARKLY DONOR COLIN	CV	g	A	231	98	192	99	2544	423		104	94	102	102	96	ALT
25	14H4929	LONG-LANGS OMAN OMAN			I	229	55	189	63			106	105	51	110	107	60	WW
26	SHOTTLE	PICSTON SHOTTLE		g	A	228	95	79	98	471	170		110	87	110	108	96	ABS
27	GGTABLEAU	TABLEAU			I	227	57	143	65			137	106	50	107	109	62	ABS
28	FULLHOUSE	JOYLEY 9 10 JACK		g	A	224	76	145	84	63	36		105	58	107	101	63	GA
29	GGMASCOL	MASCOL	TV		I	223	77	100	82			13047	108	73	101	101	81	ABS
30	GGJARDIN	JARDIN			A	221	90	194	97	420	67		103	78	102	106	91	ABS
31	VOSAC	VOSAC MAN			I	221	59	131	71			90	106	47	106	106	59	AGI
32	BOSMEGASTUD	AMBZED P MEGASTUD			1	220	57	176	68			77	105	40	101	103	61	CR
33	DICAST	DAMAR LEON	ТУ	g	Α	220	81	136	88	84	40		107	65	103	99	76	GA
34	MEDALLION	BUNDALONG MARKS MEDALLION		g	Α	219	76	172	84	79	33		105	60	116	119		GA
35	NZGSONFLAME	THOMPSONS GR FLAME S2F			1	217	56	160	68			86	104	39	97	97	62	LIV
36	NZGWARDSBANQ	EDWARDS BANQ OVATION				217	52	134	66			69	103	36	95	99	60	LIC
37	NZGLANDSPER	WESTLAND CL JASPER			-	216	58	154	69			94	103	41	90	91	63	LIV
38	ORANA	BUSHLEA WAVES FABULON			A	210	76	184	82	59	27	J4	104	62	109	108	71	GA
39	JEEBIN	COUNTRY ROAD LADINO JADIN		g		213	80	149	87		43			_			78	GA
					A					84	43	0501	106	65	108	108		-
40	RANNESLOV	RANNESLOV				212	71	174	70			9561	104	69	107	107	64	VIK
41	29H012572	GALASTAR BLUESKY	TT			212	61	113	71	4.045	0.15	129	108	50	110	108	65	ABS
42	GOLDSMITH	TOPSPEED H POTTER	TVTL	g	A	211	97	227	99	1882	310		102	90	96	92	95	GA
43	WISEPOINT	KIRK ANDREWS JACKADINO	RC	g	A	208	83	111	89	95	38		107	70	111	113	82	GA
44	29H013568	LUNCREST MILLARD	TV		I	206	56	74	64			150	110*	55	109	108	61	ABS
45	VIKNASTGARD	NASTGARDEN	TVTL		I	204	57	167	67			118	102*	50	109	101	56	VIK
46	NZGHOSANNA	VALDEN HI APPLAUSE S2F			I	204	63	165	75			49790	103	46	89	88	71	LIC
47	NZGFROSTMAN	PUKETIRO FROSTMAN S1F			I	204	57	108	71			252	103	41	99	100	62	LIC
48	PIERRE	TOP DECK KO PIERRE		g	Α	203	95	159	98	845	177		104	89	103	104	92	CR
49	CARDINAL	KAARMONA CARDINAL	TV		A	202	77	152	85	74	41		107	62	114	112	74	GA
50	NZGPASTURE	LAKESIDE S D MEADOWS			Ι	202	69	152	76			39637	103	52	100	95	73	LIC
	1	MAINSTREAM MANIFOLD			1	201	55	136	64			148	105	51	106	105		SE

*Denotes an ABV that incorporates Australian data, all other traits for this bull are ABV(i)s using data from foreign daughters. The bull must meet minimum requirements for reliability, is active and more than 1 standard deviation above average for Profit \$. For the full list go to **www.adhis.com.au**

2011 Australian Breeding Values – Good Bulls Guide

	lersey Pro	fit (Aug 2011)			PRO	FIT	PRODU	CTION				LONGE	VITY		TYPE		
RANK	BULLID	BULL NAME	GENOMICS INCLUDED	AUSTRALIAN PROVEN Or International	PROFIT \$	RELIABILITY	PRODUCTION \$	RELIABILITY	AUSTRALIAN DAUGHTERS	AUSTRALIAN HERDS	Foreign Daughters first	SURVIVAL	RELIABILITY	OVERALL TYPE	MAMMARY SYSTEM	RELIABILITY	SOURCE
1	SANDBLAST	NOWELL SANDBLAST		Α	321	74	270	80	58	21		103	61	110	111	71	AGR
2	BOSMURMUR	OKURA LIKA MURMUR S3J		Т	272	57	210	69			86	105	37	103	102	52	CRV
3	ELTON	CAIRNBRAE JACES ELTON		Α	255	83	190	90	127	40		106	67	106	106	80	ABS
4	VALERIAN	KAARMONA VALERIAN		Α	239	94	175	99	1357	252		107	78	112	106	91	GAC
5	VANAHLEM	PANNOO ABE VANAHLEM		Α	233	68	160	72	40	21		109	68	124	116	69	ALT
6	TAILBOARD	NOWELL TARSAN		A	228	95	183	98	907	204		104	86	109	105	86	GAC
7	NZGGLENGENI	GLENHAVEN TGM GENIUS S3J		Ι	227	53	206	67			79	103	32	96	98	55	LIC
8	AMBMANHATTEN	OKURA MANHATTEN-ET SJ3		A	221	97	215	99	1399	212		102	92	101	96	95	CRV
9	GAINFUL	KAARMONA GALEAO		Α	215	77	158	83	75	39		103	65	112	110	72	GAC
10	LARFALOT	LIGHTWOOD LUCRATIVE		A	215	82	158	89	97	48		106	66	111	106	75	GAC
11	NZGLYNTRADE	LYNBROOK TRADEMARK S3J		Ι	213	58	227	69			78	100	40	96	91	58	LIC
12	NZGJOSKIN	TIRONUI OM JOSKIN		Ι	208	56	192	67			66	103	36	103	99	56	LIV
13	NZGGREENY	GREENPARK OM TARGET		Ι	200	57	206	68			70	102	37	104	101	57	LIV
14	CRVCANAAN	CANAAN NEVVY PIONEER		Ι	200	48	187	63			56	102	26	98	98	49	CRV
15	VIKHULK	DJ HULK		Ι	193	52	161	65			134	102	41	93	96	47	VIK
16	29JE3487	CAL-MART JACE SIMBA		I	183	57	133	69			103	104	46	108	100	55	ABS
17	NZGTRADESMAN	LYNBROOK TRADESMAN S3J		Ι	176	58	210	69			85	100	40	91	88	59	LIC
18	35JJV24	TAWA GROVE MAUNGA ET S3J		Ι	174	68	163	75			10502	102	48	99	98	67	CRV
19	TBONE	RICHIES JACE TBONE A364		1	174	60	119	69			4182	106	57	118	110	64	AGR
20	JURACE	KAARMONA JURACE		A	171	76	101	85	71	27		106	57	104	103	64	WWS
21	NZGCAPSTAN	SOUTH LAND CAPSTAN SJ3		1	168	66	167	75			6164	101	45	92	96	62	LIC
22	NZGEDIFY	DONALDS EDIFY		I	168	63	126	75			1805	102	43	93	98	55	LIC
23	NEKEY	DENSON DALE N E KEYSTONE		A	167	76	138	84	56	21		103	58	110	105	71	ABS
24	BOSZEALOT	WHITMORE MAN ZEALOT		1	164	58	172	69			87	102	39	106	101	57	CRV
25	PROMVIEW	PROM VIEW ASTOUND POWER		Α	164	80	163	86	82	29		101	66	106	112	79	ALT
26	NZLLIKABULL	MITCHELLS LIKABULL SJ3		A	164	91	152	97	468	50		103	77	95#	96#	64	LIC
27	BOSCANYON	SUNSET CANYON ANTHEMS ALLSTAR		1	164	51	150	65			125	103	44	108	106	57	CRV
28	NZGOKURAICE	OKURA DE ICE		1	161	56	132	69			89	103	35	92	96	57	LIC
29	VIKJANTE	DJ JANTE		1	160	58	109	67	0/2	12	140	102*	46	106	102	54	VIK
30	NZGDODDY	MAGHERACANON DODDY GR		A	158	89	141	96	312	49		100	73	101#	100#	66	LIC
31	SARATOGA	BERCAR SARATOGA		A	158	93	88	97	433	143	400	105	84	106	103	85	GAC
32	BOSDJZUMA				157	53	81	65	00	00	108	104*	45	103	104	50	CRV
33	BETAHEAD	KINGS VILLE OUTDO		A	156	80	118	87	80	36	445	104	63	111	102	72	GAC
34	NZGIVINS	OKURA LFB IVINS			154	55	123	70	<u> </u>	00	115	104	34	103	102	55	LIC
35	VISIONARY	DENSON DALE MJ VISIONARY		A	152	77	128	84	62	23		102	62	113	105	75	ABS
36		LOXLEA ACL OSWALD		A	151	84	131	91	98	27		101	69 94	94	97	79	LIC
37	BADGER			A	148	98	78 91	99	2450	373		107		111	104	96 60	GAC
38		RIVERSIDE SPIRIT KAARMONA JEEP		A	147	83	81	92	234	56		106	61	110	104	69	AGR
39	JEJEEP			A	146	83	98	90	130	47	12400	105	68	103	100	83	SEM
40	NZGPANLINK	WILLIAMS PAN LINK			145	65	133	76	2020	477	13403	101	48	86	92	65	LIC
41	PASSIVE	ROCK ELLA PERIMITER BERCAR PASSIVE		A	145 145	98 97	120 106	99 99	2928 1035	477 217		104 105	97 91	101 105	96 103	96 92	SEM GAC
42	TASSIVE	DENOMITROOME		н	140	31	100	29	1030	217		105	91	105	103	92	UHU

The bull must meet minimum requirements for reliability, is active and more than 1 standard deviation above average for Profit . For the full list go to **www.adhis.com.au**

	Red Breed	ds Profit (Aug	g 20	11)	PRO	FIT	PRODU	ICTION				LONGE	νιτγ		TYPE		
RANK	DI TIN8	BULL NAME	GENETIC CODES	AUSTRALIAN PROVEN Or international	PROFIT \$	RELIABILITY	PRODUCTION	RELIABILITY	AUSTRALIAN DAUGHTERS	AUSTRALIAN HERDS	Foreign Daughters First	SURVIVAL	RELIABILITY	OVERALL TYPE	MAMMARY SYSTEM	RELIABILITY	SOURCE
1	RANDERSDAVID	R DAVID	TVTL	I	243	66	154	74			4377	111	58	112	111	58	VIK
2	ATOSIKKO	ASMO TOSIKKO		1	225	55	169	68			156	102*	43	105	109	50	VIK
3	PETERSLUND	PETERSLUND 1213		A	223	94	113	98	599	89		109	86	109#	97#	74	VIK
4	ARBBOBDOWN	LODEN BOB		A	217	81	182	89	93	46		105	62	110	104	71	GAC
5	GEDB02263	G EDBO		1	215	60	202	70			159	104	49	102	100	50	VIK
6	NZGBRODY	CARMELGLEN BRODY		1	211	52	145	69			99	109*	35				LIC
7	ARBBONJOVI	BOSGOWAN BON JOVI		A	198	79	140	87	103	54		104	61	111	104	71	GAC
8	ARBLEX	BEAULANDS LORRY		Α	197	73	134	81	69	36		107	56	118	108	57	GAC
9	RBANGKOK	R BANGKOK		I	191	61	107	73			3844	108	55	110	108	55	VIK
10	FASTRUP	R FASTRUP		I	187	58	130	68			104	104*	43	115	108	50	VIK
11	GGDRAGOMIR	DRAGOMIR		Α	183	68	142	82	50	15		104#	52	114#	110#	54	ABS
12	BOTANS3829	BOTANS 3829		Α	180	93	118	98	633	85		106	84	102#	101#	69	VIK
13	ARBMAWSON	BOSGOWAN MAWSON		Α	180	74	114	83	64	41		104	55	111	109	64	GAC
14	GGHEXER	HEXER		1	174	53	172	64			112	104	43	117	113	48	ABS
15	VFOSKE	V FOSKE		I	173	55	149	68			188	102*	43	108	104	49	VIK
16	AASHEIM10183	AASHEIM 10183		1	172	60	137	73			779	102*	43	105	98	44	GAC
17	ARBLIPPMAN	BOSGOWAN LIPPMAN		A	172	71	118	81	75	29		103	50	106	105	48	GAC
18	NZLCHALLENGE	KILFENNAN CHALLENGE		Α	171	92	112	98	607	57		106	75	107#	100#	74	LIC
19	NZGROYALPHIL	SANROSA ROYAL PHILLIP		I	170	60	134	75			2599	105	41	103	102	70	LIC
20	VIKHASLEV	R HASLEV		I	170	58	102	68			129	106*	43	115	110	51	VIK

G	uernsey	Profit (Aug 2011)			PR	OFIT	PRODU	ICTION				LONG	EVITY	
RANK	DIT ID	BULL NAME	GENETIC CODES	AUSTRALIAN PROVEN Or international	PROFIT \$	RELIABILITY	PRODUCTION	RELIABILITY	AUSTRALIAN DAUGHTERS	AUSTRALIAN HERDS	Foreign Daughters First	SURVIVAL	RELIABILITY	SOURCE
1	TIRESFORD	TIRESFORD PEDRO		I	154	55	108	67			136	103	45	AGR
2	WYSNIDER	SNIDERS OPTION AARON		I	141	59	140	68			222	101	47	WYA
3	BOSGEO	GOLDEN J LES GEORGE		I	134	41	111	52			49	102	28	CRV
4	AUSFAYSB00	KOOKABURRA FAYS BOO		Α	124	70	75	85	72	27		107	46	WAS
5	7G394	PENNY LANE ROYAL OAK TURLEY		Ι	120	50	129	59			118	102	38	WWS

E	Brown Sv	viss Profit (Aug 20	11)		PRO	FIT	PRODU	JCTION				LONGE	VITY	
RANK	BULL ID	BULL NAME	GENETIC CODES	AUSTRALIAN PROVEN Or international	PROFIT \$	RELIABILITY	PRODUCTION \$	RELIABILITY	AUSTRALIAN Daughters	AUSTRALIAN HERDS	FOREIGN DAUGHTERS FIRST	SURVIVAL	RELIABILITY	SOURCE
1	GGEVENT	EVENT		А	152	68	90	83	61	22		104	45	ABS
2	SWISSEDGE	ELM PARK JUPITERS EDGE		А	92	84	43	95	282	75		100	68	GAC
3	GGVID	VIDEO		А	50	60	29	79	58	11				ABS

The bull must meet minimum requirements for reliability, is active and more than 1 standard deviation above average for Profit \$. For the full list go to **www.adhis.com.au**

2011 Australian Breeding Values – Top Herd Summary

Top 2	% of Holstein herds based on	herd average APR,	Augus	t 2011 ABVs									
APR	Owner name	Address	Post	National	No. of	No. of	APR	ASI	Prot.	Prot	Milk	Fat	Fat
rank			code	Herd ID	cows	current			ABV	%	ABV	ABV	%
					on file	COWS				ABV			ABV
1	MCRAE SA & NM	NAMBROK	3847	2B0043B	568	198	119	94	15	0.05	465	18	-0.02
2	ANDERSON WR & BL	KONGWAK	3951	540597R	1161	254	111	88	15	0.03	468	16	-0.07
3	HENRY TW & TC	TINAMBA	3859	240108T	2127	537	104	85	14	0.06	396	14	-0.04
4	KITCHEN J M SONS	BOYANUP	6237	W00248F	1692	454	100	83	12	0.06	327	17	0.04
5	WALDER RG & CA	HEATHMERE	3305	840404W	764	153	97	71	11	0.06	271	13	0.03
6	HOGG, A & J	BIGGARA	3707	C00155U	763	163	96	82	11	0.1	217	15	0.08
7	DICKSON BJ & JL	TERANG	3264	850441U	2459	586	93	74	13	0.03	432	11	-0.1
8	PERRETT RJ & HE	Kongwak	3951	540624E	556	216	92	78	16	-0.01	630	10	-0.24
9	UEBERGANG IS & JA	GORAE WEST	3305	840391T	272	65	89	69	12	0.03	400	10	-0.1
10	COOK, R.J. & J.P.	WANGARATTA	3678	C00276F	1705	536	88	73	12	0.04	352	14	-0.02
10	PARRISH TJ & LR	BARRENGARRY	2577	N00544Q	1135	193	88	67	10	0.05	257	14	0.05
12	WAGNER G	WINNALEAH	7265	T63SWAA	3135	232	85	71	11	0.02	391	16	-0.01
12	COATES JD	ALLESTREE	3305	840377M	982	230	85	67	11	0.02	382	13	-0.05
12	MACQUEEN AD & GL	YANAKIE	3960	540139F	1168	239	85	64	10	0.05	279	10	-0.03
15	SPRUNT RG	KAARIMBA	3635	C01125S	375	161	84	58	11	0	392	11	-0.08
16	LAMBALK J.W. & J.C.	TIMBOON	3268	650274B	1122	402	83	66	10	0.06	256	10	-0.01
17	KERRINS FAMILY TRUST	KATUNGA	3640	C00455G	652	79	80	65	9	0.03	285	16	0.06
18	HEYWOOD, BO & LD	YARRAGON	3823	240851B	941	200	79	60	9	0.07	193	10	0.02
18	GALE D.P. & J.F.	TIMBOON	3268	650188L	2629	538	79	54	9	0.04	274	8	-0.06
18	WILLCOCKS P & I	YANKALILLA	5203	S00047P	820	193	79	48	10	-0.04	432	11	-0.11
21	MOSCRIPT JB ME CJ & JM	LEONGATHA	3953	540300E	761	197	78	50	11	-0.03	447	8	-0.16
22	COSTER B & M	RIPPLEBROOK	3818	981306Q	1586	819	76	62	9	0.05	234	11	0.02
22	JOHNSTON RSN & LJ	BUNDALAGUAH	3851	240024G	1706	563	76	62	10	0.02	357	12	-0.04
22	FLEMMING GM & PE	TOCUMWAL	2714	4A1373N	1176	321	76	62	10	0.03	324	12	-0.02
22	GLASGOW DC & EJ	BENA	3946	540564F	530	134	76	61	11	0.01	381	11	-0.08
26	COCHRANE W & K	ROCHESTER	3561	CF0597Q	105	62	75	71	13	-0.01	485	15	-0.08
27	PRICE IH & SW	SANDY CREEK	3695	4A1330A	899	296	74	59	8	0.05	219	12	0.04
28	WOODBINE HOLDINGS P/L	LANCASTER	3620	B20571E	2211	722	73	61	11	0.02	360	9	-0.09
28	FIELDING R & D	SOUTH RIANA	7316	T34GFJM	1413	368	73	52	7	0.05	160	10	0.05
28	PEKIN JF, A & JG	TERANG	3264	850550V	1002	258	73	51	8	0.03	247	10	-0.01
31	MEADE JF & MB	CUDGEE	3265	841874T	742	145	72	44	8	-0.02	335	11	-0.05
32	NICHOLLS RJ & HJ	STANHOPE	3623	C00691E	733	120	71	53	9	0.02	272	11	-0.01
33	LIA TO & PM PTY LTD	NILMA NORTH	3821	540184S	597	204	70	63	11	-0.02	424	17	-0.02
33	WHITE KL & DM & RL	LEONGATHA STH	3953	540605F	1132	374	70	57	9	0.03	257	12	0.01
33	KENNEDY R & M	SALE	3850	240025J	1361	206	70	54	10	0.01	346	10	-0.07
36	OANWAYJE FARMS	LONGWARRY	3816	5C0049C	1399	778	69	54	7	0.05	176	11	0.05
36	HUTTON TF AND SONS	CAPEL	6271	W00088D	1777	516	69	53	6	0.1	33	9	0.11
36	TIMPERON DT & RN	BLUMONT	7260	T61STEH	1259	439	69	49	6	0.05	130	12	0.1
36	DERIX GM & ME	MAFFRA	3860	2700031H	673	114	69	41	5	0.06	67	9	0.09
40	BATTY CG, CJ & MC	SMITHTON	7330	T14CBBM	1073	298	68	50	6	0.05	144	12	0.08

2011 Australian Breeding Values – Top Herd Summary

APR	Owner name	Address	Post	National	No. of	No. of	APR	ASI	Prot.	Prot	Milk	Fat	Fat
rank			code	Herd ID	cows o	current			ABV	%	ABV	ABV	%
					n file	COWS				ABV			ABV
41	TWEDDLE SA	DARNUM	3822	981058S	1697	607	67	54	9	0.04	239	9	-0.01
41	WALKER AH & AR	YINNAR SOUTH	3869	981403K	452	92	67	47	6	0.04	161	11	0.07
41	THORP RD	FOREST	7330	B07138K	587	470	67	38	4	0.07	11	6	0.08
44	RYAN BJ & PM	GRASMERE	3281	842120F	1278	349	65	53	9	0.01	340	10	-0.07
44	DOUGLAS JW & VL	LEITCHVILLE	3567	4A2101S	1918	551	65	48	8	0.02	257	8	-0.04
44	JELBART ML & BJ	LEONGATHA STH	3953	540364W	4153	784	65	45	6	0.06	88	8	0.06
44	NAILER NL & BE MW & JC	RINGAROOMA	7263	T62SNDW	654	91	65	42	5	0.05	80	10	0.09
44	PORTEUS GD	SMITHTON	7330	T15APLF	47	35	65	33	2	0.06	-55	12	0.21
49	AULT G.K. & J.M.	ROCHESTER	3561	C00857B	649	174	64	54	9	0	335	13	-0.02
49	FEHRING B.N. NO 2 (MEAD)	COHUNA	3568	4A2159B	948	190	64	52	8	0.03	221	11	0.02
49	CASHMORE DB & RA	TIMBOON	3268	650288O	1421	358	64	41	7	0.02	235	7	-0.04
Top 2% of Jersey herds based on herd average APR, August 2011 ABVs													
1	HOEY DM & L	KATUNGA	3640	240699A	945	247	102	83	9	0.18	1	16	0.3
2	GLENNEN & CO C	TERANG	3264	850588C	2372	460	98	77	5	0.25	-182	17	0.51
3	WORBOYS R. & A.	KOTTA	3565	C00993T	1002	240	75	54	4	0.17	-116	11	0.32
4	MCMANUS, B.T.& C.A.	BAMAWM	3561	C00935T	646	109	62	48	4	0.17	-119	8	0.27
5	WYSS TRADING P/L	BOORCAN	3265	850604I	990	150	60	50	3	0.1	-30	16	0.33
6	DUPLIEX, DM & WH	COBRAM	3644	C00430M	321	49	57	45	2	0.15	-139	11	0.35
7	MILLBROOK ELLIS & CO	TALLANDOON	3701	4A1307S	622	32	50	41	6	0.07	80	3	-0.02
8	SEALEY NJ & V	HENTY	3312	8405370	718	261	46	40	1	0.19	-210	8	0.37
9	MOSCRIPT JB ME CJ & JM	LEONGATHA	3953	540300E	893	81	45	27	-1	0.15	-249	11	0.46
Top 2% of Red Breeds herds based on herd average APR, August 2011 ABVs													
Ayrsh	ire												
1	PENFOLD DA & VE	WILLOW GROVE	3825	5A0045H	246	31	-87	-61	-11	0.02	-449	-13	0.09
Illawa	irra												
1	CARSON, J.H. & G.L.	IRREWILLIPE	3249	740170H	45	34	1	9	6	-0.09	410	0	-0.25
2	SALISBURY ANTHONY J	RATHDOWNEY	4287	C00042H	381	33	-35	-25	-4	0	-161	-7	0
AussieRed													
1	RALEIGH J	TIMBOON	3268	650244V	575	188	79	39	5	0.05	70	7	0.06
Top 2	% of Guernsey herds based o	n herd average APR, .	August	2011 ABVs	1								
Guernsey													
1	KEYWYN FARMS - FIEBIGER	ANGASTON	5353	S00193L	492	44	22	2	0	0.02	-29	-1	0.02
Top 2	% of Brown Swiss herds base	d on herd <u>average</u> AP	PR, Aug		Vs								
Brown Swiss													
1	BRADLEY JH	DAYBORO	4521	Q00345Q	284	144	-15	-13	-2	-0.02	-37	-2	0
1	FIECHTNER KJ & JC	CLIFTON	4361	EGCT00L	199	32	-15	-14	-1	-0.05	13	-3	-0.08
			-			1	-	1	1		1		

